@article{ZVMMF_2011_51_9_a3,
author = {M. I. Sumin},
title = {Regularized parametric {Kuhn{\textendash}Tucker} theorem in {a~Hilbert} space},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1594--1615},
year = {2011},
volume = {51},
number = {9},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_9_a3/}
}
M. I. Sumin. Regularized parametric Kuhn–Tucker theorem in a Hilbert space. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 9, pp. 1594-1615. http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_9_a3/
[1] Alekseev V. M., Tikhomirov V. M., Fomin S. V., Optimalnoe upravlenie, Nauka, M., 1979 | MR
[2] Sukharev A. G., Timokhov A. V., Fedorov V. V., Kurs metodov optimizatsii, Nauka, M., 1986 | MR | Zbl
[3] Vasilev F. P., Metody optimizatsii, Faktorial Press, M., 2002
[4] Minu M., Matematicheskoe programmirovanie. Teoriya i algoritmy, Nauka, M., 1990 | MR
[5] Sumin M. I., “Optimalnoe upravlenie parabolicheskimi uravneniyami: dvoistvennye chislennye metody, regulyarizatsiya”, Raspredelennye sistemy: optimizatsiya i prilozhenie v ekonomike i naukakh ob okruzhayuschei srede, In-t matem. i mekhan. UrO RAN, Ekaterinburg, 2000, 66–69
[6] Sumin M. I., “Regulyarizovannyi gradientnyi dvoistvennyi metod resheniya obratnoi zadachi finalnogo nablyudeniya dlya parabolicheskogo uravneniya”, Zh. vychisl. matem. i matem. fiz., 44:11 (2004), 2001–2019 | MR | Zbl
[7] Sumin M. I., “Regulyarizatsiya v lineino-vypukloi zadache matematicheskogo programmirovaniya na osnove teorii dvoistvennosti”, Zh. vychisl. matem. i matem. fiz., 47:4 (2007), 602–625 | MR | Zbl
[8] Sumin M. I., “Metod vozmuschenii i dvoistvennaya regulyarizatsiya v lineino vypukloi zadache matematicheskogo programmirovaniya”, Prob. dinamich. upravleniya, 3, Izdat. otdel f-ta VMiK MGU, M., 2008, 200–231
[9] Sumin M. I., Nekorrektnye zadachi i metody ikh resheniya. Materialy k lektsiyam dlya studentov starshikh kursov, Izd-vo Nizhegorodskogo gos. un-ta, Nizhnii Novgorod, 2009
[10] Sumin M. I., “Parametric dual regularization in a linear-convex mathematical programming”, Comput. Optimizat. New Res. Developments, 10, Nova Sci. Publ. Inc., New-York, 2010, 265–311
[11] Sumin M. I., “Parametricheskaya dvoistvennaya regulyarizatsiya v optimizatsii, optimalnom upravlenii i obratnykh zadachakh”, Vestn. Tambovskogo un-ta. Ser. Estestvennye i tekhn. nauki, 15:1 (2010), 467–492
[12] Sumin M. I., “Regulyarizovannyi dvoistvennyi metod resheniya nelineinoi zadachi matematicheskogo programmirovaniya”, Zh. vychisl. matem. i matem. fiz., 47:5 (2007), 796–816 | MR | Zbl
[13] Sumin M. I., “Parametric dual regularization in a nonlinear mathematical programming”, Advances Math Res., 11, no. 5, Nova Sci. Publs Inc., New-York, 2010, 103–134
[14] Loewen P. D., Optimal control via nonsmooth analysis, CRM Proc. and Lecture Notes, 2, Amer. Math. Soc., Providence, RI, 1993 | MR | Zbl
[15] Varga Dzh., Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Nauka, M., 1977 | MR
[16] Oben Zh.-P., Nelineinyi analiz i ego ekonomicheskie prilozheniya, Mir, M., 1988 | MR
[17] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1986 | MR | Zbl