Regularized parametric Kuhn–Tucker theorem in a Hilbert space
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 9, pp. 1594-1615 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For a parametric convex programming problem in a Hilbert space with a strongly convex objective functional, a regularized Kuhn–Tucker theorem in nondifferential form is proved by the dual regularization method. The theorem states (in terms of minimizing sequences) that the solution to the convex programming problem can be approximated by minimizers of its regular Lagrangian (which means that the Lagrange multiplier for the objective functional is unity) with no assumptions made about the regularity of the optimization problem. Points approximating the solution are constructively specified. They are stable with respect to the errors in the initial data, which makes it possible to effectively use the regularized Kuhn–Tucker theorem for solving a broad class of inverse, optimization, and optimal control problems. The relation between this assertion and the differential properties of the value function (S-function) is established. The classical Kuhn–Tucker theorem in nondifferential form is contained in the above theorem as a particular case. A version of the regularized Kuhn–Tucker theorem for convex objective functionals is also considered.
@article{ZVMMF_2011_51_9_a3,
     author = {M. I. Sumin},
     title = {Regularized parametric {Kuhn{\textendash}Tucker} theorem in {a~Hilbert} space},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1594--1615},
     year = {2011},
     volume = {51},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_9_a3/}
}
TY  - JOUR
AU  - M. I. Sumin
TI  - Regularized parametric Kuhn–Tucker theorem in a Hilbert space
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2011
SP  - 1594
EP  - 1615
VL  - 51
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_9_a3/
LA  - ru
ID  - ZVMMF_2011_51_9_a3
ER  - 
%0 Journal Article
%A M. I. Sumin
%T Regularized parametric Kuhn–Tucker theorem in a Hilbert space
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2011
%P 1594-1615
%V 51
%N 9
%U http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_9_a3/
%G ru
%F ZVMMF_2011_51_9_a3
M. I. Sumin. Regularized parametric Kuhn–Tucker theorem in a Hilbert space. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 9, pp. 1594-1615. http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_9_a3/

[1] Alekseev V. M., Tikhomirov V. M., Fomin S. V., Optimalnoe upravlenie, Nauka, M., 1979 | MR

[2] Sukharev A. G., Timokhov A. V., Fedorov V. V., Kurs metodov optimizatsii, Nauka, M., 1986 | MR | Zbl

[3] Vasilev F. P., Metody optimizatsii, Faktorial Press, M., 2002

[4] Minu M., Matematicheskoe programmirovanie. Teoriya i algoritmy, Nauka, M., 1990 | MR

[5] Sumin M. I., “Optimalnoe upravlenie parabolicheskimi uravneniyami: dvoistvennye chislennye metody, regulyarizatsiya”, Raspredelennye sistemy: optimizatsiya i prilozhenie v ekonomike i naukakh ob okruzhayuschei srede, In-t matem. i mekhan. UrO RAN, Ekaterinburg, 2000, 66–69

[6] Sumin M. I., “Regulyarizovannyi gradientnyi dvoistvennyi metod resheniya obratnoi zadachi finalnogo nablyudeniya dlya parabolicheskogo uravneniya”, Zh. vychisl. matem. i matem. fiz., 44:11 (2004), 2001–2019 | MR | Zbl

[7] Sumin M. I., “Regulyarizatsiya v lineino-vypukloi zadache matematicheskogo programmirovaniya na osnove teorii dvoistvennosti”, Zh. vychisl. matem. i matem. fiz., 47:4 (2007), 602–625 | MR | Zbl

[8] Sumin M. I., “Metod vozmuschenii i dvoistvennaya regulyarizatsiya v lineino vypukloi zadache matematicheskogo programmirovaniya”, Prob. dinamich. upravleniya, 3, Izdat. otdel f-ta VMiK MGU, M., 2008, 200–231

[9] Sumin M. I., Nekorrektnye zadachi i metody ikh resheniya. Materialy k lektsiyam dlya studentov starshikh kursov, Izd-vo Nizhegorodskogo gos. un-ta, Nizhnii Novgorod, 2009

[10] Sumin M. I., “Parametric dual regularization in a linear-convex mathematical programming”, Comput. Optimizat. New Res. Developments, 10, Nova Sci. Publ. Inc., New-York, 2010, 265–311

[11] Sumin M. I., “Parametricheskaya dvoistvennaya regulyarizatsiya v optimizatsii, optimalnom upravlenii i obratnykh zadachakh”, Vestn. Tambovskogo un-ta. Ser. Estestvennye i tekhn. nauki, 15:1 (2010), 467–492

[12] Sumin M. I., “Regulyarizovannyi dvoistvennyi metod resheniya nelineinoi zadachi matematicheskogo programmirovaniya”, Zh. vychisl. matem. i matem. fiz., 47:5 (2007), 796–816 | MR | Zbl

[13] Sumin M. I., “Parametric dual regularization in a nonlinear mathematical programming”, Advances Math Res., 11, no. 5, Nova Sci. Publs Inc., New-York, 2010, 103–134

[14] Loewen P. D., Optimal control via nonsmooth analysis, CRM Proc. and Lecture Notes, 2, Amer. Math. Soc., Providence, RI, 1993 | MR | Zbl

[15] Varga Dzh., Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Nauka, M., 1977 | MR

[16] Oben Zh.-P., Nelineinyi analiz i ego ekonomicheskie prilozheniya, Mir, M., 1988 | MR

[17] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1986 | MR | Zbl