Optimal convex correcting procedures in problems of high dimension
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 9, pp. 1751-1760

Voir la notice de l'article provenant de la source Math-Net.Ru

The properties of convex correcting procedures (CCPs) over sets of predictors are examined. It is shown that the minimization of the generalized error in a CCP is reduced to a quadratic programming problem. The conditions are studied under which a set of predictors cannot be reduced without degrading the accuracy of the corresponding optimal CCP. Experimental studies of the prognostic properties of CCPs for samples of one-dimensional linear regressions showed that CCP optimization can be an effective tool for regression variable selection.
@article{ZVMMF_2011_51_9_a15,
     author = {A. A. Dokukin and O. V. Senko},
     title = {Optimal convex correcting procedures in problems of high dimension},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1751--1760},
     publisher = {mathdoc},
     volume = {51},
     number = {9},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_9_a15/}
}
TY  - JOUR
AU  - A. A. Dokukin
AU  - O. V. Senko
TI  - Optimal convex correcting procedures in problems of high dimension
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2011
SP  - 1751
EP  - 1760
VL  - 51
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_9_a15/
LA  - ru
ID  - ZVMMF_2011_51_9_a15
ER  - 
%0 Journal Article
%A A. A. Dokukin
%A O. V. Senko
%T Optimal convex correcting procedures in problems of high dimension
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2011
%P 1751-1760
%V 51
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_9_a15/
%G ru
%F ZVMMF_2011_51_9_a15
A. A. Dokukin; O. V. Senko. Optimal convex correcting procedures in problems of high dimension. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 9, pp. 1751-1760. http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_9_a15/