Optimal convex correcting procedures in problems of high dimension
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 9, pp. 1751-1760 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The properties of convex correcting procedures (CCPs) over sets of predictors are examined. It is shown that the minimization of the generalized error in a CCP is reduced to a quadratic programming problem. The conditions are studied under which a set of predictors cannot be reduced without degrading the accuracy of the corresponding optimal CCP. Experimental studies of the prognostic properties of CCPs for samples of one-dimensional linear regressions showed that CCP optimization can be an effective tool for regression variable selection.
@article{ZVMMF_2011_51_9_a15,
     author = {A. A. Dokukin and O. V. Senko},
     title = {Optimal convex correcting procedures in problems of high dimension},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1751--1760},
     year = {2011},
     volume = {51},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_9_a15/}
}
TY  - JOUR
AU  - A. A. Dokukin
AU  - O. V. Senko
TI  - Optimal convex correcting procedures in problems of high dimension
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2011
SP  - 1751
EP  - 1760
VL  - 51
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_9_a15/
LA  - ru
ID  - ZVMMF_2011_51_9_a15
ER  - 
%0 Journal Article
%A A. A. Dokukin
%A O. V. Senko
%T Optimal convex correcting procedures in problems of high dimension
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2011
%P 1751-1760
%V 51
%N 9
%U http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_9_a15/
%G ru
%F ZVMMF_2011_51_9_a15
A. A. Dokukin; O. V. Senko. Optimal convex correcting procedures in problems of high dimension. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 9, pp. 1751-1760. http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_9_a15/

[1] Zhuravlev Yu .I., Kuznetsova A. V., Ryazanov V. V et al., “The use of pattern recognition methods in tasks of biomedical diagnostics and forecasting”, Pattern Recognition and Image Analysis, 18:2 (2008), 195–200 | DOI | MR

[2] Zhuravlev Yu. I., Ryazanov V. V., Senko O. V., Raspoznavanie. Matematicheskie metody. Programmnaya sistema. Prilozheniya, Fazis, M., 2006

[3] Kuznetsov V. A., Senko O. V. et al., “Recognition of fuzzy systems by method of statistically weighed syndromes and its using for immunological and hematological norm and chronic pathology”, Chem. Phys., 15:1 (1996), 81–100

[4] Kuncheva L. I., Combining pattern classifiers. Methods and algorithms, Wiley Intersci., New Jersey, 2004 | MR | Zbl

[5] Senko O. V., The use of collective method for improvement of regression modeling stability, Statistics on Internet., 2004 http://www.statjournals.net/

[6] Senko O. V., “An optimal ensemble of predictors in convex correcting procedures”, Pattern Recognition and Image Analysis, 19, no. 3, MAIK “Nauka/Interperiodica”, 2009, 465–468 | DOI

[7] Tibshirani R., “Regression shrinkage and selection via the lasso”, J. Roy. Statist. Soc., 58 (1996), 267–288 | MR | Zbl