Propagation of TM waves in a layer with arbitrary nonlinearity
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 9, pp. 1729-1739 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A boundary value problem for Maxwell’s equations describing propagation of TM waves in a nonlinear dielectric layer with arbitrary nonlinearity is considered. The layer is located between two linear semi-infinite media. The problem is reduced to a nonlinear boundary eigenvalue problem for a system of second-order nonlinear ordinary differential equations. A dispersion equation for the eigenvalues of the problem (propagation constants) is derived. For a given nonlinearity function, the dispersion equation can be studied both analytically and numerically. A sufficient condition for the existence of at least one eigenvalue is formulated.
@article{ZVMMF_2011_51_9_a13,
     author = {D. V. Valovik},
     title = {Propagation of {TM~waves} in a~layer with arbitrary nonlinearity},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1729--1739},
     year = {2011},
     volume = {51},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_9_a13/}
}
TY  - JOUR
AU  - D. V. Valovik
TI  - Propagation of TM waves in a layer with arbitrary nonlinearity
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2011
SP  - 1729
EP  - 1739
VL  - 51
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_9_a13/
LA  - ru
ID  - ZVMMF_2011_51_9_a13
ER  - 
%0 Journal Article
%A D. V. Valovik
%T Propagation of TM waves in a layer with arbitrary nonlinearity
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2011
%P 1729-1739
%V 51
%N 9
%U http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_9_a13/
%G ru
%F ZVMMF_2011_51_9_a13
D. V. Valovik. Propagation of TM waves in a layer with arbitrary nonlinearity. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 9, pp. 1729-1739. http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_9_a13/

[1] Eleonskii P. N., Oganes'yants L. G., Silin V. P., “Cylindrical nonlinear waveguides”, Soviet Phys. Letter, 35:1 (1972), 44–47

[2] Schurmann H. W., Serov V. S., Shestopalov Yu. V., “TE-polarized waves guided by a lossness nonlinear three-layer structure”, Phys. Rev. E, 58:1 (1998), 1040–1050 | DOI

[3] Joseph R. I., Christodoulides D. N., “Exact field decomposition for TM waves in nonlinear media”, Opt. Lett., 12:10 (1987), 826–828 | DOI

[4] Leung K. M., Lin R. L., “Scattering of transverse-magnetic waves with a nonlinear film: Formal field solutions in quadratures”, Phys. Rev. B, 44:10 (1991), 5007–5012 | DOI

[5] Valovik D. V., Smirnov Yu. G., “Nelineinaya zadacha na sobstvennye znacheniya dlya TM-polyarizovannykh elektromagnitnykh voln v nelineinom sloe”, Izv. vuzov. Matematika, 2008, no. 10, 70–74 | MR | Zbl

[6] Valovik D. V., Smirnov Yu. G., “O rasprostranenii TM-polyarizovannykh elektromagnitnykh voln v nelineinom sloe s nelineinostyu, vyrazhennoi zakonom Kerra”, Zh. vychisl. matem. i matem. fiz., 48:12 (2008), 2186–2194 | MR

[7] Valovik D. V., “O suschestvovanii reshenii nelineinoi kraevoi zadachi na sobstvennye znacheniya dlya TM-polyarizovannykh elektromagnitnykh voln”, Izv. vuzov. Povolzhskii region. Fiz. matem. nauki, 2008, no. 2, 86–94

[8] Valovik D. V., Smirnov Yu. G., “Raschet postoyannykh rasprostraneniya TM-polyarizovannykh elektromagnitnykh voln v nelineinom sloe”, Radiotekhn. i elektronika, 53:8 (2008), 934–940

[9] Valovik D. V., Smirnov Yu. G., “Raschet postoyannykh rasprostraneniya i polei dlya polyarizovannykh elektromagnitnykh TM-voln v nelineinom anizotropnom sloe”, Radiotekhn. i elektronika, 54:4 (2009), 411–417

[10] Kupriyanova S. N., Smirnov Yu. G., “Rasprostranenie elektromagnitnykh voln v tsilindricheskikh dielektricheskikh volnovodakh, zapolnennykh nelineinoi sredoi”, Zh. vychisl. matem. i matem. fiz., 44:10 (2004), 1850–1860 | MR | Zbl

[11] Smirnov Yu. G., Khorosheva E. A., Medvedik M. Yu., “Chislennoe reshenie zadachi o rasprostranenii elektromagnitnykh TM-voln v kruglykh dielektricheskikh volnovodakh, zapolnennykh nelineinoi sredoi”, Izv. vuzov. Povolzhskii region. Fiz. matem. nauki, 2010, no. 1, 2–13

[12] Valovik D. V., “Zadacha o rasprostranenii elektromagnitnykh voln v sloe s proizvolnoi nelineinostyu. I: TE-volny”, Izv. vuzov. Povolzhskii region. Fiz. matem. nauki, 2010, no. 1, 18–27

[13] Bautin N. N., Leontovich E. A., Metody i priemy kachestvennogo issledovaniya dinamicheskikh sistem na ploskosti. Spravochnaya matematicheskaya biblioteka, v. 11, Nauka, M., 1990 | MR | Zbl

[14] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965 | MR