Propagation of TM waves in a layer with arbitrary nonlinearity
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 9, pp. 1729-1739

Voir la notice de l'article provenant de la source Math-Net.Ru

A boundary value problem for Maxwell’s equations describing propagation of TM waves in a nonlinear dielectric layer with arbitrary nonlinearity is considered. The layer is located between two linear semi-infinite media. The problem is reduced to a nonlinear boundary eigenvalue problem for a system of second-order nonlinear ordinary differential equations. A dispersion equation for the eigenvalues of the problem (propagation constants) is derived. For a given nonlinearity function, the dispersion equation can be studied both analytically and numerically. A sufficient condition for the existence of at least one eigenvalue is formulated.
@article{ZVMMF_2011_51_9_a13,
     author = {D. V. Valovik},
     title = {Propagation of {TM~waves} in a~layer with arbitrary nonlinearity},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1729--1739},
     publisher = {mathdoc},
     volume = {51},
     number = {9},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_9_a13/}
}
TY  - JOUR
AU  - D. V. Valovik
TI  - Propagation of TM waves in a layer with arbitrary nonlinearity
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2011
SP  - 1729
EP  - 1739
VL  - 51
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_9_a13/
LA  - ru
ID  - ZVMMF_2011_51_9_a13
ER  - 
%0 Journal Article
%A D. V. Valovik
%T Propagation of TM waves in a layer with arbitrary nonlinearity
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2011
%P 1729-1739
%V 51
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_9_a13/
%G ru
%F ZVMMF_2011_51_9_a13
D. V. Valovik. Propagation of TM waves in a layer with arbitrary nonlinearity. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 9, pp. 1729-1739. http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_9_a13/