Extraproximal method for solving two-person saddle-point games
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 9, pp. 1576-1587 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An equilibrium model is proposed for a two-person saddle-point game with partially coincident or conflicting interests. Meaningful interpretations of such a game are discussed. Three variants of the extraproximal method for finding an equilibrium point are proposed, and their convergence is proved.
@article{ZVMMF_2011_51_9_a1,
     author = {A. S. Antipin and L. A. Artem'eva and F. P. Vasil'ev},
     title = {Extraproximal method for solving two-person saddle-point games},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1576--1587},
     year = {2011},
     volume = {51},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_9_a1/}
}
TY  - JOUR
AU  - A. S. Antipin
AU  - L. A. Artem'eva
AU  - F. P. Vasil'ev
TI  - Extraproximal method for solving two-person saddle-point games
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2011
SP  - 1576
EP  - 1587
VL  - 51
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_9_a1/
LA  - ru
ID  - ZVMMF_2011_51_9_a1
ER  - 
%0 Journal Article
%A A. S. Antipin
%A L. A. Artem'eva
%A F. P. Vasil'ev
%T Extraproximal method for solving two-person saddle-point games
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2011
%P 1576-1587
%V 51
%N 9
%U http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_9_a1/
%G ru
%F ZVMMF_2011_51_9_a1
A. S. Antipin; L. A. Artem'eva; F. P. Vasil'ev. Extraproximal method for solving two-person saddle-point games. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 9, pp. 1576-1587. http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_9_a1/

[1] Antipin A. S., “Metody resheniya sistem zadach vypuklogo programmirovaniya”, Zh. vychisl. matem. i matem. fiz., 27:3 (1987), 368–376 | MR

[2] Antipin A. S., “O modelyakh vzaimodeistviya predpriyatii-proizvoditelei, predpriyatii-potrebitelei i transportnoi sistemy”, Avtomatika i telemekhan., 1989, no. 10, 105–113 | Zbl

[3] Antipin A. S., Popova O. A., “O ravnovesnoi modeli kreditnogo rynka: postanovka zadachi i metody resheniya”, Zh. vychisl. matem. i matem. fiz., 49:3 (2009), 465–481 | MR | Zbl

[4] Antipin A. S., “Ravnovesnoe programmirovanie: modeli i metody resheniya”, Izvestiya Irkutskogo gos. un-ta. Seriya matem., 2:1 (2009), 8–36

[5] Germeier Yu. B., Igry s neprotivopolozhnymi interesami, Nauka, M., 1976 | MR | Zbl

[6] Krasnoschekov P. S., Morozov V. V., Popov N. M., Optimizatsiya v avtomatizirovannom proektirovanii, MAKS-Press, M., 2008

[7] Vasilev F. P., Metody optimizatsii, Faktorial Press, M., 2002

[8] Antipin A. S., “Ekstraproksimalnyi metod resheniya ravnovesnykh i igrovykh zadach”, Zh. vychisl. matem. i matem. fiz., 45:11 (2005), 1969–1990 | MR | Zbl

[9] Antipin A. S., “Ekstraproksimalnyi metod resheniya ravnovesnykh i igrovykh zadach so svyazannymi peremennymi”, Zh. vychisl. matem. i matem. fiz., 45:12 (2005), 2102–2111 | MR | Zbl

[10] Antipin A. S., “Sedlovye gradientnye protsessy, upravlyaemye s pomoschyu obratnykh svyazei”, Avtomatika i telemekhan., 1994, no. 3, 12–23 | MR | Zbl