Boundary value problem for an elliptic equation with rapidly oscillating coefficients in a rectangle
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 8, pp. 1457-1466
Cet article a éte moissonné depuis la source Math-Net.Ru
An elliptic equation in a rectangle with coefficients depending on a fast variable and with its period being a small parameter is considered. An asymptotic expansion of the solution up to an arbitrary degree of the small parameter is constructed and substantiated by applying the two-scale expansion method.
@article{ZVMMF_2011_51_8_a8,
author = {I. S. Malakhova},
title = {Boundary value problem for an elliptic equation with rapidly oscillating coefficients in a~rectangle},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1457--1466},
year = {2011},
volume = {51},
number = {8},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_8_a8/}
}
TY - JOUR AU - I. S. Malakhova TI - Boundary value problem for an elliptic equation with rapidly oscillating coefficients in a rectangle JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2011 SP - 1457 EP - 1466 VL - 51 IS - 8 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_8_a8/ LA - ru ID - ZVMMF_2011_51_8_a8 ER -
%0 Journal Article %A I. S. Malakhova %T Boundary value problem for an elliptic equation with rapidly oscillating coefficients in a rectangle %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2011 %P 1457-1466 %V 51 %N 8 %U http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_8_a8/ %G ru %F ZVMMF_2011_51_8_a8
I. S. Malakhova. Boundary value problem for an elliptic equation with rapidly oscillating coefficients in a rectangle. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 8, pp. 1457-1466. http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_8_a8/
[1] Bakhvalov N. S., Panasenko G. P., Osrednenie protsessov v periodicheskikh sredakh, Nauka, M., 1984 | MR | Zbl
[2] Zhikov V. V., Kozlov S. M., Oleinik O. A., Usrednenie differentsialnykh operatorov, Fizmatlit, M., 1993 | MR | Zbl
[3] Ilin A. M., Danilin A. R., Asimptoticheskie metody v analize, Fizmatlit, M., 2009
[4] Gilbarg D., Trudinger N., Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989 | MR | Zbl