@article{ZVMMF_2011_51_8_a7,
author = {A. A. Azamov and O. S. Akhmedov},
title = {Existence of a~complex closed trajectory in a~three-dimensional dynamical system},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1449--1456},
year = {2011},
volume = {51},
number = {8},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_8_a7/}
}
TY - JOUR AU - A. A. Azamov AU - O. S. Akhmedov TI - Existence of a complex closed trajectory in a three-dimensional dynamical system JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2011 SP - 1449 EP - 1456 VL - 51 IS - 8 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_8_a7/ LA - ru ID - ZVMMF_2011_51_8_a7 ER -
%0 Journal Article %A A. A. Azamov %A O. S. Akhmedov %T Existence of a complex closed trajectory in a three-dimensional dynamical system %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2011 %P 1449-1456 %V 51 %N 8 %U http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_8_a7/ %G ru %F ZVMMF_2011_51_8_a7
A. A. Azamov; O. S. Akhmedov. Existence of a complex closed trajectory in a three-dimensional dynamical system. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 8, pp. 1449-1456. http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_8_a7/
[1] Arnold V. I., Ilyashenko Yu. S., “Obyknovennye differentsialnye uravneniya, I”, Itogi nauki i tekhn. Sovrem. probl. matem. Fundamentalnye napravleniya, 1, VINITI, M., 1985, 7–149 | MR
[2] Steve Smale, “Mathematical problems for the next century”, Math. Track School Math. Sci., 1:1 (1998), 5–30 | MR
[3] Ilyashenko Yu., “Centennial history of Hilbert's 16th problem”, Bull. (New Series). Amer. Math. Soc., 39:3 (2002), 301–354 | DOI | MR | Zbl
[4] Puankare A., O krivykh, opredelyaemykh differentsialnymi uravneniyami, OGIZ, M.–L., 1947
[5] Andronov A. A., Leontovich E. A., Gordon I. I., Maier A. G., Kachestvennaya teoriya dinamicheskikh sistem vtorogo poryadka, Nauka, M., 1966 | MR | Zbl
[6] Kuperberg K., “A smooth counterexample to the Seifert conjecture”, Ann. Math., 140:3 (1994), 723–732 | DOI | MR | Zbl
[7] Azamov A. A., “Metod DN-slezheniya dlya dokazatelstva suschestvovaniya predelnykh tsiklov”, Differents. ur-niya i topologiya, Tezisy dokl. mezhdunar. konf., posvyaschennoi 100-letiyu so dnya rozhdeniya L. S. Pontryagina, M., 2008, 87–88
[8] Bakhvalov N. S., Chislennye metody, v. 1, Nauka, M., 1973 | MR | Zbl
[9] Shilnikov L. P., Shilnikov A. L., Turaev D. V., Chua L., Metody kachestvennoi teorii v nelineinoi dinamike, ch. 1, In-t kompyuternykh issledovanii, M., 2004
[10] Arnold V. I., Obyknovennye differentsialnye uravneniya, Nauka, M., 1975 | MR | Zbl
[11] Azamov A. A., Tilavov A. M., “Prosteishaya dinamicheskaya sistema s predelnym tsiklom”, Uzbekskii matem. zhurnal, 2009, no. 2, 35–41 | MR