Existence of a complex closed trajectory in a three-dimensional dynamical system
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 8, pp. 1449-1456 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The DN-tracking method is used to prove the existence of a closed trajectory in a quadratic system of ordinary differential equations in three dimensions.
@article{ZVMMF_2011_51_8_a7,
     author = {A. A. Azamov and O. S. Akhmedov},
     title = {Existence of a~complex closed trajectory in a~three-dimensional dynamical system},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1449--1456},
     year = {2011},
     volume = {51},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_8_a7/}
}
TY  - JOUR
AU  - A. A. Azamov
AU  - O. S. Akhmedov
TI  - Existence of a complex closed trajectory in a three-dimensional dynamical system
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2011
SP  - 1449
EP  - 1456
VL  - 51
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_8_a7/
LA  - ru
ID  - ZVMMF_2011_51_8_a7
ER  - 
%0 Journal Article
%A A. A. Azamov
%A O. S. Akhmedov
%T Existence of a complex closed trajectory in a three-dimensional dynamical system
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2011
%P 1449-1456
%V 51
%N 8
%U http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_8_a7/
%G ru
%F ZVMMF_2011_51_8_a7
A. A. Azamov; O. S. Akhmedov. Existence of a complex closed trajectory in a three-dimensional dynamical system. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 8, pp. 1449-1456. http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_8_a7/

[1] Arnold V. I., Ilyashenko Yu. S., “Obyknovennye differentsialnye uravneniya, I”, Itogi nauki i tekhn. Sovrem. probl. matem. Fundamentalnye napravleniya, 1, VINITI, M., 1985, 7–149 | MR

[2] Steve Smale, “Mathematical problems for the next century”, Math. Track School Math. Sci., 1:1 (1998), 5–30 | MR

[3] Ilyashenko Yu., “Centennial history of Hilbert's 16th problem”, Bull. (New Series). Amer. Math. Soc., 39:3 (2002), 301–354 | DOI | MR | Zbl

[4] Puankare A., O krivykh, opredelyaemykh differentsialnymi uravneniyami, OGIZ, M.–L., 1947

[5] Andronov A. A., Leontovich E. A., Gordon I. I., Maier A. G., Kachestvennaya teoriya dinamicheskikh sistem vtorogo poryadka, Nauka, M., 1966 | MR | Zbl

[6] Kuperberg K., “A smooth counterexample to the Seifert conjecture”, Ann. Math., 140:3 (1994), 723–732 | DOI | MR | Zbl

[7] Azamov A. A., “Metod DN-slezheniya dlya dokazatelstva suschestvovaniya predelnykh tsiklov”, Differents. ur-niya i topologiya, Tezisy dokl. mezhdunar. konf., posvyaschennoi 100-letiyu so dnya rozhdeniya L. S. Pontryagina, M., 2008, 87–88

[8] Bakhvalov N. S., Chislennye metody, v. 1, Nauka, M., 1973 | MR | Zbl

[9] Shilnikov L. P., Shilnikov A. L., Turaev D. V., Chua L., Metody kachestvennoi teorii v nelineinoi dinamike, ch. 1, In-t kompyuternykh issledovanii, M., 2004

[10] Arnold V. I., Obyknovennye differentsialnye uravneniya, Nauka, M., 1975 | MR | Zbl

[11] Azamov A. A., Tilavov A. M., “Prosteishaya dinamicheskaya sistema s predelnym tsiklom”, Uzbekskii matem. zhurnal, 2009, no. 2, 35–41 | MR