@article{ZVMMF_2011_51_8_a6,
author = {L. M. Skvortsov},
title = {Explicit adaptive {Runge{\textendash}Kutta} methods for stiff and oscillation problems},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1434--1448},
year = {2011},
volume = {51},
number = {8},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_8_a6/}
}
TY - JOUR AU - L. M. Skvortsov TI - Explicit adaptive Runge–Kutta methods for stiff and oscillation problems JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2011 SP - 1434 EP - 1448 VL - 51 IS - 8 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_8_a6/ LA - ru ID - ZVMMF_2011_51_8_a6 ER -
L. M. Skvortsov. Explicit adaptive Runge–Kutta methods for stiff and oscillation problems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 8, pp. 1434-1448. http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_8_a6/
[1] Skvortsov L. M., “Yavnyi mnogoshagovyi metod chislennogo resheniya zhestkikh differentsialnykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 47:6 (2007), 959–967 | MR
[2] Fowler M. E., Warten R. M., “A numerical integration technique for ordinary differential equations with widely separated eigenvalues”, IBM J. Research and Development, 11:5 (1967), 537–543 | DOI | MR | Zbl
[3] Fatunla S. O., “Numerical integrators for stiff and highly oscillatory differential equations”, Math. Comput., 34:150 (1980), 373–390 | DOI | MR | Zbl
[4] Bobkov V. V., “Ob odnom sposobe postroeniya metodov chislennogo resheniya differentsialnykh uravnenii”, Differents. ur-niya, 19:7 (1983), 1115–1122 | MR | Zbl
[5] Zavorin A. N., “Primenenie nelineinykh metodov dlya rascheta perekhodnykh protsessov v elektricheskikh tsepyakh”, Izv. vuzov. Radioelektronika, 26:3 (1983), 35–41
[6] Saworin A. N., “Über die Effektivitat einiger nichtlinearer Verfahren bei der numerischen Behandlung steifer Differentialgleichungssysteme”, Numer. Math., 40:2 (1982), 169–177 | DOI | MR | Zbl
[7] Ashour S. S., Hanna O. T., “Explicit exponential method for the integration of stiff ordinary differential equations”, J. Guidance, Control and Dynamics, 14:6 (1991), 1234–1239 | DOI | MR | Zbl
[8] Lambert J. D., “Nonlinear methods for stiff systems of ordinary differential equations”, Lect. Notes in Math., 363 (1974), 75–88 | DOI | MR | Zbl
[9] Wambecq A., “Rational Runge–Kutta methods for solving systems of ordinary differential equations”, Computing, 20:4 (1978), 333–342 | DOI | MR | Zbl
[10] Bobkov V. V., “Novye yavnye A-ustoichivye metody chislennogo resheniya differentsialnykh uravnenii”, Differents. ur-niya, 14:12 (1978), 2249–2251 | MR | Zbl
[11] Wu X. Y., Xia J. L., “Two low accuracy methods for stiff systems”, Appl. Math. Comput., 123:2 (2001), 141–153 | DOI | MR | Zbl
[12] Ramos H., “A non-standard explicit integration scheme for initial-value problems”, Appl. Math. Comput., 189:1 (2007), 710–718 | DOI | MR | Zbl
[13] Skvortsov L. M., “Adaptivnye metody tsifrovogo modelirovaniya dinamicheskikh sistem”, Izv. RAN. Teoriya i sistemy upravleniya, 1995, no. 4, 180–190 | MR
[14] Skvortsov L. M., “Adaptivnye metody chislennogo integrirovaniya v zadachakh modelirovaniya dinamicheskikh sistem”, Izv. RAN. Teoriya i sistemy upravleniya, 1999, no. 4, 72–78 | MR | Zbl
[15] Skvortsov L. M., “Yavnye adaptivnye metody chislennogo resheniya zhestkikh sistem”, Matem. modelirovanie, 12:12 (2000), 97–107 | MR | Zbl
[16] Skvortsov L. M., “Yavnye metody Runge-Kutty dlya umerenno zhestkikh zadach”, Zh. vychisl. matem. i matem. fiz., 45:11 (2005), 2017–2030 | MR | Zbl
[17] Lebedev V. I., “Kak reshat yavnymi metodami zhestkie sistemy differentsialnykh uravnenii”, Vychisl. protsessy i sistemy, vyp. 8, Nauka, M., 1991, 237–291 | MR
[18] Simos T. E., “A modified Runge–Kutta method for the numerical solution of ODE' s with oscillation solutions”, Appl. Math. Letters, 9:6 (1996), 61–66 | DOI | MR | Zbl
[19] Franco J. M., “Runge–Kutta methods adapted to the numerical integration of oscillatory problems”, Appl. Numer. Math., 50:3,4 (2004), 427–443 | DOI | MR | Zbl
[20] Fang Y., Song Y., Wu X., “New embedded pairs of explicit Runge–Kutta methods with FSAL properties adapted to the numerical integration of oscillatory problems”, Phys. Letters A, 372:44 (2008), 6551–6559 | DOI | MR | Zbl
[21] Kosti A. A., Anastassi Z. A., Simos T. E., “An optimized explicit Runge–Kutta method with increased phase-lag order for the numerical solution of the Schrödinger equation and related problems”, J. Math. Chem., 47:1 (2010), 315–330 | DOI | MR | Zbl
[22] Prothero A., Robinson A., “On the stability and accuracy of one-step methods for solving stiff systems of ordinary differential equations”, Math. Comput., 28:1 (1974), 145–162 | DOI | MR
[23] Khairer E., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii. Zhestkie i differentsialno-algebraicheskie zadachi, Mir, M., 1999
[24] Mazzia F., Magherini C., Test set for initial value problem solvers, Release 2.4, 2008 http://www.pitagora.dm.uniba.it/~testset/ report/testset.pdf
[25] http://www.web.math.unifi.it/users/brugnano/BiM/BiMD/index_BiMD.htm