Cauchy problem for the Mathieu equation away from parametric resonance
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 8, pp. 1419-1433 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Four solutions of the Cauchy problem for Mathieu’s equation away from parametric resonance domains are analytically constructed using an asymptotic averaging method in the fourth approximation. Three solutions occur near fractional parameter values at which slow combination phases exist. The fourth solution occurs in the absence of slow phases away from parametric resonance domains and the fractional parameter values.
@article{ZVMMF_2011_51_8_a5,
     author = {A. F. Kurin},
     title = {Cauchy problem for the {Mathieu} equation away from parametric resonance},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1419--1433},
     year = {2011},
     volume = {51},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_8_a5/}
}
TY  - JOUR
AU  - A. F. Kurin
TI  - Cauchy problem for the Mathieu equation away from parametric resonance
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2011
SP  - 1419
EP  - 1433
VL  - 51
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_8_a5/
LA  - ru
ID  - ZVMMF_2011_51_8_a5
ER  - 
%0 Journal Article
%A A. F. Kurin
%T Cauchy problem for the Mathieu equation away from parametric resonance
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2011
%P 1419-1433
%V 51
%N 8
%U http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_8_a5/
%G ru
%F ZVMMF_2011_51_8_a5
A. F. Kurin. Cauchy problem for the Mathieu equation away from parametric resonance. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 8, pp. 1419-1433. http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_8_a5/

[1] Mak-Lakhlan N. V., Teoriya i prilozheniya funktsii Mate, Izd-vo inostr. lit., M., 1953

[2] Khayasi T., Nelineinye kolebaniya v fizicheskikh sistemakh, Mir, M., 1968

[3] Ains E. L., Obyknovennye differentsialnye uravneniya, Faktorial, M., 2005

[4] Kurin A. F., “Zadacha Koshi dlya uravneniya Mate pri parametricheskom rezonanse”, Zh. vychisl. matem. i matem. fiz., 48:4 (2008), 633–650 | MR | Zbl

[5] Kurin A. F., “Spektralnyi kriterii ustoichivosti i zadacha Koshi dlya uravneniya Khilla pri parametricheskom rezonanse”, Zh. vychisl. matem. i matem. fiz., 49:3 (2009), 498–511 | MR | Zbl

[6] Bogolyubov N. N., Mitropolskii Yu. A., Asimptoticheskie metody v teorii nelineinykh kolebanii, Nauka, M., 1974 | MR

[7] Moiseev N. N., Asimptoticheskie metody nelineinoi mekhaniki, Nauka, M., 1981 | MR

[8] Grebenikov E. A., Metod usredneniya v prikladnykh zadachakh, Nauka, M., 1986 | MR

[9] Grebenikov E. A., Ryabov Yu. A., Konstruktivnye metody analiza nelineinykh sistem, Nauka, M., 1979 | MR | Zbl

[10] Grebenikov E. A., Mitropolskii Yu. A., Ryabov Yu. A., Vvedenie v rezonansnuyu analiticheskuyu dinamiku, Yanus-K, M., 1989