Relaxation oscillations and diffusion chaos in the Belousov reaction
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 8, pp. 1400-1418 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Asymptotic and numerical analysis of relaxation self-oscillations in a three-dimensional system of Volterra ordinary differential equations that models the well-known Belousov reaction is carried out. A numerical study of the corresponding distributed model – the parabolic system obtained from the original system of ordinary differential equations with the diffusive terms taken into account subject to the zero Neumann boundary conditions at the endpoints of a finite interval is attempted. It is shown that, when the diffusion coefficients are proportionally decreased while the other parameters remain intact, the distributed model exhibits the diffusion chaos phenomenon; that is, chaotic attractors of arbitrarily high dimension emerge.
@article{ZVMMF_2011_51_8_a4,
     author = {S. D. Glyzin and A. Yu. Kolesov and N. Kh. Rozov},
     title = {Relaxation oscillations and diffusion chaos in the {Belousov} reaction},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1400--1418},
     year = {2011},
     volume = {51},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_8_a4/}
}
TY  - JOUR
AU  - S. D. Glyzin
AU  - A. Yu. Kolesov
AU  - N. Kh. Rozov
TI  - Relaxation oscillations and diffusion chaos in the Belousov reaction
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2011
SP  - 1400
EP  - 1418
VL  - 51
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_8_a4/
LA  - ru
ID  - ZVMMF_2011_51_8_a4
ER  - 
%0 Journal Article
%A S. D. Glyzin
%A A. Yu. Kolesov
%A N. Kh. Rozov
%T Relaxation oscillations and diffusion chaos in the Belousov reaction
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2011
%P 1400-1418
%V 51
%N 8
%U http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_8_a4/
%G ru
%F ZVMMF_2011_51_8_a4
S. D. Glyzin; A. Yu. Kolesov; N. Kh. Rozov. Relaxation oscillations and diffusion chaos in the Belousov reaction. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 8, pp. 1400-1418. http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_8_a4/

[1] Glyzin S. D., Kolesov A. Yu., Rozov N. Kh., “Konechnomernye modeli diffuzionnogo khaosa”, Zh. vychisl. matem. i matem. fiz., 50:5 (2010), 860–875 | MR | Zbl

[2] Belousov B. P., “Periodicheski deistvuyuschaya reaktsiya i ee mekhanizmy”, Avtovolnovye protsessy v sistemakh s diffuziei, In-t prikl. fiz. AN SSSR, Gorkii, 1981, 176–186

[3] Zhabotinskii A. M., Kontsentratsionnye avtokolebaniya, Nauka, M., 1974

[4] Kolesov Yu. S., Problema adekvatnosti ekologicheskikh uravnenii, Dep. v VINITI, No 1901-85, Yaroslavsl, 1985

[5] Ruoff P., Noyes R. M., “An amplified oregonator model simulating alternative excitabilities, transitions in types of oscillations, and temporary bistability in a closed system”, J. Chem. Phys., 84:5 (1986), 1413–1423 | DOI

[6] Milnor J., “On the concept of attractor”, Communs Math. Phys., 99:2 (1985), 177–196 | DOI | MR

[7] Frederickson P., Kaplan J., Yorke J., “The Lyapunov dimension of strange attractors”, J. Different. Equat., 49:2 (1983), 185–207 | DOI | MR | Zbl

[8] Kolesov Yu. S., “Neklassicheskii relaksatsionnyi tsikl odnoi trekhmernoi sistemy differentsialnykh uravnenii Lotki–Volterra”, Matem. sb., 191:4 (2000), 91–106 | MR | Zbl