The method of medians in the problem of ranking interval objects specified by three points
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 8, pp. 1390-1399 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A method for ranking interval objects is proposed and analyzed; the characteristics of those objects are represented by pessimistic, optimistic, and most probable estimates. The method is based on the approximation of the binary probability preference relation by the binary median preference relation. The method is verified using statistical modeling (the Monte Carlo method). The proposed approach can be used for ranking nonreusable and reusable objects.
@article{ZVMMF_2011_51_8_a3,
     author = {I. F. Shakhnov},
     title = {The method of medians in the problem of ranking interval objects specified by three points},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1390--1399},
     year = {2011},
     volume = {51},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_8_a3/}
}
TY  - JOUR
AU  - I. F. Shakhnov
TI  - The method of medians in the problem of ranking interval objects specified by three points
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2011
SP  - 1390
EP  - 1399
VL  - 51
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_8_a3/
LA  - ru
ID  - ZVMMF_2011_51_8_a3
ER  - 
%0 Journal Article
%A I. F. Shakhnov
%T The method of medians in the problem of ranking interval objects specified by three points
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2011
%P 1390-1399
%V 51
%N 8
%U http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_8_a3/
%G ru
%F ZVMMF_2011_51_8_a3
I. F. Shakhnov. The method of medians in the problem of ranking interval objects specified by three points. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 8, pp. 1390-1399. http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_8_a3/

[1] Belton V., Stewart T., Multiple criteria decision analysis: An integrated approach, Kluwer Acad. Publ., Dordrecht, 2002 | Zbl

[2] Shakhnov I. F., “Model dlya obrabotki rezultatov parnykh sravnenii ob'ektov, zadavaemykh v vide intervalnykh otsenok”, Elektronnaya tekhnika. Ser. Ekonomika i sistemy upravleniya, 1990, no. 4, 33–39

[3] Islam R., Biswal M. P., Alam S. S., “Preference programming and inconsistent interval judgements”, Eur. J. Operat. Res., 97 (1997), 53–62 | DOI | Zbl

[4] Leskinen P., “Measurements scales and scale independence in the analytical hierarchy process”, JMCDA, 9 (2000), 163–174 | Zbl

[5] Shakhnov I. F., “Primenenie teorii grafov v zadache kolichestvennoi otsenki vazhnosti tselei”, Dokl. AN, 401:2 (2005), 173–176 | MR

[6] Podinovskii V. V., “Zadacha otsenivaniya koeffitsientov vazhnosti kak simmetricheski-leksikograficheskaya zadacha optimizatsii”, Avtomatika i telemekhan., 2003, no. 3, 130–162 | MR

[7] Tervonen T., Figueira J. R., “A survey on stochastic multicriteria acceptability analysis methods”, JMCDA, 15 (2008), 1–14 | Zbl

[8] Ushakov I. A., “Zadacha o vybore predpochtitelnogo ob'ekta”, Izv. AN SSSR. Ser. Tekhn. kibernetika, 1971, no. 4, 3–8

[9] Tyurin Yu. N., Litvak B. G., Orlov A. I. i dr., Analiz nechislovoi informatsii, AN SSSR. Nauchn. sovet po kompleksnoi probl. Kibernetika, M., 1981 | Zbl

[10] Shakhnov I. F., “Zadacha ranzhirovaniya intervalnykh velichin pri mnogokriterialnom analize slozhnykh sistem”, Izv. RAN. Teoriya i sistemy upravleniya, 2008, no. 1, 37–44 | MR | Zbl

[11] Shakhnov I. F., “Ekspress-analiz uporyadochennosti intervalnykh velichin”, Avtomatika i telemekhan., 2004, no. 10, 67–84 | MR | Zbl

[12] Golenko D. I., Statisticheskie metody setevogo planirovaniya i upravleniya, Nauka, M., 1968 | Zbl

[13] Kozeletskii Yu., Psikhologicheskaya teoriya reshenii, Progress, M., 1979

[14] Shakhnov I. F., “Metod tsentralnogo lucha v zadache kvantifikatsii intensivnosti predpochtenii na osnove parnykh sravnenii”, Izv. RAN. Teoriya i sistemy upravleniya, 2009, no. 4, 96–108 | MR

[15] Aivazyan S. A., Mkhitaryan V. S., Prikladnaya statistika i osnovy ekonometriki, Knizhnyi dom YuNEITI, M., 1998

[16] Orlov A. I., Prikladnaya statistika, Ekzamen, M., 2004