@article{ZVMMF_2011_51_8_a15,
author = {D. A. Kropotov},
title = {Variational relevance vector machine for classification and regression problems with multidimensional feature arrays},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1541--1560},
year = {2011},
volume = {51},
number = {8},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_8_a15/}
}
TY - JOUR AU - D. A. Kropotov TI - Variational relevance vector machine for classification and regression problems with multidimensional feature arrays JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2011 SP - 1541 EP - 1560 VL - 51 IS - 8 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_8_a15/ LA - ru ID - ZVMMF_2011_51_8_a15 ER -
%0 Journal Article %A D. A. Kropotov %T Variational relevance vector machine for classification and regression problems with multidimensional feature arrays %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2011 %P 1541-1560 %V 51 %N 8 %U http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_8_a15/ %G ru %F ZVMMF_2011_51_8_a15
D. A. Kropotov. Variational relevance vector machine for classification and regression problems with multidimensional feature arrays. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 8, pp. 1541-1560. http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_8_a15/
[1] Friedman J., Hastie T., Tibshirani R., The elements of statistical learning, Springer, New York, 2001 | MR
[2] Bishop C. M., Pattern recognition and machine learning, Springer, New York, 2006 | MR
[3] Vetrov D. P., Kropotov D. A., Osokin A. A., “Avtomaticheskoe opredelenie kolichestva komponent v EM-algoritme vosstanovleniya smesi normalnykh raspredelenii”, Zh. vychisl. matem. i matem. fiz., 50:4 (2010), 1–14 | MR
[4] Tipping M., “Sparse bayesian learning and the relevance vector machine”, J. Mach. Learn. Res., 1 (200), 211–244 | MR | Zbl
[5] Ahonen T., Hadid A., Pietrikaine M., “Face description with local binary patterns: Application to face recognition”, IEEE Trans. Pattern. Analys. Mach. Intel., 28:12 (2006), 2037–2041 | DOI
[6] Heikkila M., Pietikainen M., Schmid C., “Description of interest regions with center-symmetric local binary patterns”, Proc. 5th Indian Conf. Comput. Vis. Graph. Image Proc., 2006, 58–69 | DOI
[7] Yang J., Zhang D., Frangi A., Yang J., “Two-dimensional PCA: a new approach to appearance-based face representation and recognition”, IEEE Trans. Pattern. Analys. Mach. Intel., 26:1 (2004), 131–137 | DOI
[8] Zuo W., Zhang D., Wang K., “Bidirectional PCA with assembled matrix distance metric for image recognition”, IEEE Trans. Syst. Man Cyber. B, 36:4 (2006), 863–872 | DOI
[9] Xu D., Yan L., Zhang L. et al., Coupled subspaces analysis, Techn. Rept. No MSR-TR-2004-106, 2004
[10] Ye J., Janardan R., Li Q., “Two-dimensional linear discriminant analysis”, Advances Neural inform. Proc. Syst., 17 (2004)
[11] Li M., Yaun B., “2D-LDA: A statistical linear discriminant analysis for image matrix”, Pattern Rec. Letters, 26:5 (2005), 527–532 | DOI
[12] Yang W., Wang J., Ren M. et al., “Feature extraction based on laplacian bidirectional maximum margin criterion”, Pattern. Rec., 42:11 (2009), 2327–2334 | DOI | Zbl
[13] Wolf L., Jhuang H., Hazan T., “Modeling appearances with low-rank SVM”, Proc. Intern. Conf. Comput. Vis. Pattern. Res., 2007
[14] Boser B. E., Guyon I., Vapnik V., “A training algorithm for optimal margin classifiers”, Proc. Intern. Conf. Comput. Leartn. Theory, 1992, 144–152
[15] Tibshirani R., “Regression shrinkage and selection via the lasso”, J. Roy. Statist. Sco. B, 58:1 (1996), 267–288 | MR | Zbl
[16] MacKay D., “Bayesian interpolation”, Neural Comput., 4:3 (1992), 415–447 | DOI
[17] Williams P., “Bayesian regularization and pruning using a Laplace prior”, Neural Comput., 7:1 (1995), 117–143 | DOI
[18] Cawley G., Talbot N., “Gene selection in cancer classification using sparse logistic regression with Bayesian regularization”, Bioinformatics, 22 (2006), 2348–2355 | DOI
[19] Jordan M. I., Gharamani Z., Jaakkola T. S., Saul L. K., “An introduction to variational methods for graphical models”, Learning in Graphical Models, 1998, 105–162
[20] Bishop C., Tipping M., “Variational relevance vector machine”, Proc. Internat. Conf. Uncertainty Artif. Intel., 2000
[21] Minka T., “Expectation propagation for approximate Bayesian inference”, Proc. Internat. Conf. Uncertainty Artif. Intel., 2001, 362–369
[22] Jaakkola T., Jordan M., “Bayesian parameter estimation through variational methods”, Statist. Comput., 10 (2000), 25–37 | DOI
[23] Qi Y., Minka T., Picard R., Gharamani Z., “Predictive automatic relevance determination by expectation propagation”, Proc. Internat. Conf. Mach. Learn., 2004
[24] MacKay D., “Ensemble learning for hidden Markov models”, Techn. Rept. Dept. Phys. Univ. Cambridge, 1997
[25] Bishop C. M., “Bayesian PCA”, Advances Neural Inform. Proc. Sys., 11 (1999), 382–388
[26] Huang G. B., Ramesh M., Berg T., Learned-Miller E., Labeled faces in the Wild: A database for studying face recognition in unconstrained environments, Techn. Rept. No TR 07-49, 2007
[27] Ojala T., Pietikäinen M., Mäenpää T., “A generalized local binary pattern operator for multiresolution gray scale and rotation invariant texture classification”, Proc. Internat. Conf. Advances Pattern. Res., 2001
[28] Ojala T., Pietikäinen M., Mäenpää T., “Multiresolution gray-scale and rotation invariant texture classification with local binary patterns”, IEEE Trans. Pattern. Analys. Mach. Intel., 24:7 (2002), 971–987 | DOI
[29] Wolf L., Hassner T., Taigman Y., “Descriptor based methods in the wild”, Real-Life Images Workshop at ECCV, 2008