Asymptotic estimates for the number of solutions of the dualization problem and its generalizations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 8, pp. 1531-1540

Voir la notice de l'article provenant de la source Math-Net.Ru

Asymptotic estimates for the typical number of irreducible coverings and the typical length of an irreducible covering of a Boolean matrix are obtained in the case when the number $m$ of rows is no less than the number $n$ of columns. As a consequence, asymptotic estimates are obtained for the typical number of maximal conjunctions and the typical rank of a maximal conjunction of a monotone Boolean function of $n$ variables defined by a conjunctive normal form of $m$ clauses. Similar estimates are given for the number of irredundant coverings and the length of an irredundant covering of an integer matrix (for the number of maximal conjunctions and the rank of a maximal conjunction of a two-valued logical function defined by its zero set). Results obtained previously in this area are overviewed.
@article{ZVMMF_2011_51_8_a14,
     author = {E. V. Djukova and R. M. Sotnezov},
     title = {Asymptotic estimates for the number of solutions of the dualization problem and its generalizations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1531--1540},
     publisher = {mathdoc},
     volume = {51},
     number = {8},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_8_a14/}
}
TY  - JOUR
AU  - E. V. Djukova
AU  - R. M. Sotnezov
TI  - Asymptotic estimates for the number of solutions of the dualization problem and its generalizations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2011
SP  - 1531
EP  - 1540
VL  - 51
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_8_a14/
LA  - ru
ID  - ZVMMF_2011_51_8_a14
ER  - 
%0 Journal Article
%A E. V. Djukova
%A R. M. Sotnezov
%T Asymptotic estimates for the number of solutions of the dualization problem and its generalizations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2011
%P 1531-1540
%V 51
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_8_a14/
%G ru
%F ZVMMF_2011_51_8_a14
E. V. Djukova; R. M. Sotnezov. Asymptotic estimates for the number of solutions of the dualization problem and its generalizations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 8, pp. 1531-1540. http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_8_a14/