Dimension reduction in fluid dynamics equations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 8, pp. 1518-1530 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A method for transforming the Euler and Navier–Stokes equations and a complete system of fluid dynamics equations in three dimensions to a closed system on any moving surface is proposed. As a result, for an arbitrary geometric configuration, the dimension of the equations is reduced by one, which makes them convenient for numerical simulation. The general principles of the method are described, and verifying examples are presented.
@article{ZVMMF_2011_51_8_a13,
     author = {V. B. Akkerman and M. L. Zaytsev},
     title = {Dimension reduction in fluid dynamics equations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1518--1530},
     year = {2011},
     volume = {51},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_8_a13/}
}
TY  - JOUR
AU  - V. B. Akkerman
AU  - M. L. Zaytsev
TI  - Dimension reduction in fluid dynamics equations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2011
SP  - 1518
EP  - 1530
VL  - 51
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_8_a13/
LA  - ru
ID  - ZVMMF_2011_51_8_a13
ER  - 
%0 Journal Article
%A V. B. Akkerman
%A M. L. Zaytsev
%T Dimension reduction in fluid dynamics equations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2011
%P 1518-1530
%V 51
%N 8
%U http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_8_a13/
%G ru
%F ZVMMF_2011_51_8_a13
V. B. Akkerman; M. L. Zaytsev. Dimension reduction in fluid dynamics equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 8, pp. 1518-1530. http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_8_a13/

[1] Tikhonov A. N., Samarskii A. A., Uravneniya matematicheskoi fiziki, Nauka, M., 1966 | MR | Zbl

[2] Landau L. D., Lifshits E. M., Teoreticheskaya fizika, v. VI, Gidrodinamika, Nauka, M., 1986 | MR

[3] Williams F. A., Combustion theory, Benjamin, CA, 1985

[4] Zeldovich Ya. B., Barenblatt G. I., Librovich V. B., Makhviladze G. M., The mathematical theory of combustion and explosion, Consultants Bureau, New York, 1985 | MR

[5] Samarskii A. A., Popov Yu. P., Raznostnye metody resheniya zadach gazovoi dinamiki, Nauka, M., 1980 | MR

[6] Bychkov V. V., “Nonlinear equation for a curved stationary flame and the flame velocity”, Phys. Fluids, 10 (1998), 2091 | DOI | MR | Zbl

[7] Bychkov V., Zaytsev M., Akkerman V., “Coordinate-free description of corrugated flames with realistic gas expansion”, Phys. Rev. E, 68 (2003), 026312 | DOI

[8] Zaitsev M. L., Akkerman V. B., “K nelineinoi teorii dvizheniya poverkhnostei gidrodinamicheskikh razryvov”, Zh. eksperim. i teor. fiz., 135:4 (2009), 800–819 | MR

[9] Sivashinsky G. I., “Nonlinear analysis of hydrodynamics instability in laminar flames. I: Derivation of basic equations”, Acta Astronaut., 4:11–12 (1977), 1177–1206 | DOI | MR | Zbl

[10] Frankel M., “An equation of surface dynamics modeling flame fronts as density discontinuities in potential flows”, Phys. Fluids A, 2 (1990), 1879 | DOI | MR | Zbl

[11] Korenev G. V., Tenzornoe ischislenie, MFTI, M., 1996

[12] Ckhouten Ya. A., Tenzornyi analiz dlya fizikov, Nauka, M., 1965

[13] Pobedrya B. E., Lektsii po tenzornomu analizu, Izd-vo MGU, M., 1986 | Zbl

[14] Fedoryuk M. V., Obyknovennye differentsialnye uravneniya, Lan, SPb., 2003

[15] Polyanin A. D., Zaitsev V. F., Spravochnik po nelineinym uravneniyam matematicheskoi fiziki. Tochnye resheniya, Fizmatlit, M., 2002 | MR

[16] Travnikov O. Yu., Bychkov V. V., Liberman M. A., “Numerical studies of flames in wide tubes. Stability limits of curved stationary flames”, Phys. Rev. E, 61 (2000), 468–474 | DOI

[17] Bychkov V. V., Golberg S. M., Liberman M. A. et al., “Propagation of curved stationary flames in tubes”, Phys. Rev. E, 54 (1996), 3713 | DOI

[18] Kadowaki S., “The influence of hydrodynamic instability on the structure of cellular flames”, Phys. Fluids, 11 (1999), 3426 | DOI | MR | Zbl