Justification of the stabilization method for a mathematical model of charge transport in semiconductors
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 8, pp. 1495-1517 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An initial boundary value problem for a quasilinear system of equations is studied and effectively applied to numerically determine, by the stabilization method, stationary solutions of a hydrodynamic model describing the motion of electrons in the silicon transistor MESFET (metal semiconductor field effect transistor). An initial boundary value problem has a number of special features; namely, the system of differential equations is not a system of Cauchy–Kovalevskaya type; the boundary of the domain is a nonsmooth curve, it contains corner points; the quasilinearity of the system is related, in particular, to the presence in the equations of squared component of the gradients of unknowns functions. The problem under consideration can be reduced to an equivalent system of integrodifferential equations by using a representation of solutions of a model problem, which makes it possible to prove the local-in-time existence and uniqueness of a weakened solution. Under additional assumptions on the problem data, the global solvability of the mixed problem is proved and the stabilization method is justified by using an energy integral constructed for this purpose and Schauder’s fixed point theorem.
@article{ZVMMF_2011_51_8_a12,
     author = {A. M. Blokhin and D. L. Tkachev},
     title = {Justification of the stabilization method for a~mathematical model of charge transport in semiconductors},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1495--1517},
     year = {2011},
     volume = {51},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_8_a12/}
}
TY  - JOUR
AU  - A. M. Blokhin
AU  - D. L. Tkachev
TI  - Justification of the stabilization method for a mathematical model of charge transport in semiconductors
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2011
SP  - 1495
EP  - 1517
VL  - 51
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_8_a12/
LA  - ru
ID  - ZVMMF_2011_51_8_a12
ER  - 
%0 Journal Article
%A A. M. Blokhin
%A D. L. Tkachev
%T Justification of the stabilization method for a mathematical model of charge transport in semiconductors
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2011
%P 1495-1517
%V 51
%N 8
%U http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_8_a12/
%G ru
%F ZVMMF_2011_51_8_a12
A. M. Blokhin; D. L. Tkachev. Justification of the stabilization method for a mathematical model of charge transport in semiconductors. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 8, pp. 1495-1517. http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_8_a12/

[1] Selberherr S., Analysis and simulation of semiconductor devices, Springer, Wien–New York, 1984

[2] Hansch W., The drift diffusion equations and its applications in MESFET modeling, Springer, Wien, 1991 | Zbl

[3] Markovich P., Ringhober C. A., Schmeister C., Semiconductor equations, Springer, Wien, 1990 | MR

[4] Chen D., Kan E. C., Ravaioli U. et al., “An improved energy-transport model including nonparabolicity and nonmaxwellian distribution effects”, IEEE on Electron Device Lett., 13 (1992), 26–28 | DOI

[5] Lyumkis E., Polsky B., Shir A., Visocky P., “Transient semiconductor device simulation including energy balance equation”, COMPEL, 11 (1992), 311–325 | Zbl

[6] Abdallah N. B., Degond P., “On a hierarchy of macroscopic models for semiconductors”, J. Math. Phys., 37 (1996), 3308–3333 | DOI | MR

[7] Anile A. M., Romano V., “Hydrodynamical modeling of charge carrier transport in semiconductors”, MECCANICA, 35 (2000), 249–296 | DOI | Zbl

[8] Anile A. M., Mascali G., Romano V., Lect. Notes in mathematics, Springer, 2003 | MR

[9] Anile A. M., Romano V., “Non parabolic band transport in semiconductors: closure of the moment equations”, Cont. Mech. Thermodyn., 11 (1999), 307–325 | DOI | MR | Zbl

[10] Romano V., “Non parabolic band transport in semiconductors: closure of the production terms in the moment equations”, Cont. Mech. Thermodyn., 12 (2000), 31–51 | DOI | MR | Zbl

[11] Miiller I., Ruggeri T., Rational extended thermodynamics, Springer, Berlin, 1998 | MR

[12] Jon D., Casas-Vazques J., Lebon G., Extended irreversible thermodynamics, Springer, Berlin, 1993 | MR

[13] Levermore C. D., “Moment closure hierarchies for kinetic theories”, J. Statist. Phys., 83 (1996), 331–407 | DOI | MR

[14] Anile A. M., Muscato O., Romano V., “Moment equations with maximum entropy closure for carrier transport in semiconductor devices: validation in bulk silicon”, VLSI Design., 10 (2000), 335–354 | DOI

[15] Muscato O., Romano V., “Simulation of submicron silicon diode with a nonparabolic hydrodynamical model based on the maximum entropy principle”, VLSI Design., 13 (2001), 273–279 | DOI

[16] Romano V., “Nonparabolic band hydrodynamical model of silicon semiconductors and simulation of electron de vices”, Math. Meth. Appl. Sci., 24 (2001), 439–471 | DOI | MR | Zbl

[17] Romano V., “2D simulation of a silicon MESFET with a non-parabolic hydrodynamical model based on the max imum entropy principle”, J. Comput. Phys., 176 (2002), 70–92 | DOI | Zbl

[18] Romano V., “2D numerical simulation of the MEP energy-transport model with a finite difference scheme”, J. Comput. Phys., 221 (2007), 439–468 | DOI | MR | Zbl

[19] Blokhin A. M., Bushmanov R. S., Rudometova A. S., Romano V., “Linear asymptotic stability of the equilibrium state for the 2D MEP hydrodynamical model of charge transport in semiconductors”, Nonlinear Analys, 65 (2006), 1018–1038 | DOI | MR | Zbl

[20] Blokhin A. M., Bushmanov R. S., Romano V., “Nonlinear asymptotic stability of the equilibrium state for the MEP model of charge transport in semiconductors”, Nonlinear Analys, 65 (2006), 2169–2191 | DOI | MR | Zbl

[21] Blokhin A. M., Ibragimova A. S., Semisalov B. V., “Konstruirovanie vychislitelnogo algoritma dlya sistemy momentnykh uravnenii, opisyvayuschikh perenos zaryada v poluprovodnikakh”, Matem. modelirovanie, 21 (2009), 15–34 | MR | Zbl

[22] Blokhin A. M., Ibragimova A. S., “Numerical method for 2D simulation of a silicon MESFET with a hydrodynam ical model based on the maximum entropy principle”, SIAM J. Scient. Comput., 31:3 (2009), 2015–2046 | DOI | MR | Zbl

[23] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971 | Zbl

[24] Shubin M. A., Psevdodifferentsialnye operatory i spektralnaya teoriya, Nauka, M., 1978 | MR

[25] Demidenko G. V., Uspenskii S. V., Teoremy vlozheniya i ikh prilozheniya k differentsialnym uravneniyam, Nauka, Novosibirsk, 1984

[26] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR

[27] Gilbarg D., Trudinger N., Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989 | MR | Zbl

[28] Sveshnikov A. G., Alshin A. B., Korpusov M. O., Pletner Yu. D., Lineinye i nelineinye uravneniya sobolevskogo tipa, Fizmatlit, M., 2007

[29] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR

[30] Nazarov S. A., Plamenevskii B. A., Ellipticheskie zadachi v oblastyakh s kusochno-gladkoi granitsei, Nauka, M., 1991

[31] Blokhin A. M., Tkachev D. L., “Representation of the solution to a model problem in semiconductor physics”, J. Math. Analys. Appl., 341 (2008), 1468–1475 | DOI | MR | Zbl

[32] Lavrentev M. A., Shabat B. V., Metody teorii funktsii kompleksnogo peremennogo, Gostekhizdat, M.–L., 1951

[33] Gaevskii Kh., Greger K., Zakharis K., Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Mir, M., 1978 | MR

[34] Mizokhata S., Teoriya uravnenii s chastnymi proizvodnymi, Mir, M., 1977

[35] Petrovskii I. G., Lektsii po teorii obyknovennykh differentsialnykh uravnenii, Izd-vo MGU, M., 1984

[36] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1984 | MR | Zbl

[37] Babenko K. I., Osnovy chislennogo analiza, NITs "Regulyarnaya i khaotich. dinamika, M.–Izhevsk, 2002

[38] Blokhin A. M., Ibragimova A. S., “1D numerical simulation of the MEP mathematical model in ballistic diode problem”, J. Kinetic and Related Models, 2:1 (2009), 81–107 | DOI | MR | Zbl

[39] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Fizmatlit, M., 1996 | MR | Zbl

[40] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, SO AN SSSR, Novosibirsk, 1962

[41] Iosida K., Funktsionalnyi analiz, Mir, M., 1967 | MR