@article{ZVMMF_2011_51_8_a10,
author = {S. V. Gavrilov and A. M. Denisov},
title = {Numerical methods for determining the inhomogeneity boundary in a~boundary value problem for {Laplace{\textquoteright}s} equation in a~piecewise homogeneous medium},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1476--1489},
year = {2011},
volume = {51},
number = {8},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_8_a10/}
}
TY - JOUR AU - S. V. Gavrilov AU - A. M. Denisov TI - Numerical methods for determining the inhomogeneity boundary in a boundary value problem for Laplace’s equation in a piecewise homogeneous medium JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2011 SP - 1476 EP - 1489 VL - 51 IS - 8 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_8_a10/ LA - ru ID - ZVMMF_2011_51_8_a10 ER -
%0 Journal Article %A S. V. Gavrilov %A A. M. Denisov %T Numerical methods for determining the inhomogeneity boundary in a boundary value problem for Laplace’s equation in a piecewise homogeneous medium %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2011 %P 1476-1489 %V 51 %N 8 %U http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_8_a10/ %G ru %F ZVMMF_2011_51_8_a10
S. V. Gavrilov; A. M. Denisov. Numerical methods for determining the inhomogeneity boundary in a boundary value problem for Laplace’s equation in a piecewise homogeneous medium. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 8, pp. 1476-1489. http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_8_a10/
[1] Eckel H., Kress R., “Nonlinear integral equations for the inverse electrical impedance problem”, Inverse Problems, 23 (2007), 475–491 | DOI | MR | Zbl
[2] Kwon O., Seo J. K., Yoon J. R., “A real-time algorithm for the location search of discontinuous conductivities with one measurement”, Communs. Pure and Appl. Math., 55:1 (2002), 1–29 | DOI | MR | Zbl
[3] Denisov A. M., Zakharov E. V., Kalinin A. V., Kalinin V. V., “Chislennye metody resheniya nekotorykh obratnykh zadach elektrofiziologii serdtsa”, Differents. ur-niya, 45:7 (2009), 1014–1022 | MR | Zbl
[4] Gavrilov S. V., Denisov A. M., “Chislennyi metod opredeleniya granitsy neodnorodnosti v zadache Dirikhle dlya uravneniya Laplasa v kusochno-odnorodnoi srede”, Zh. vychisl. matem. i matem. fiz., 50:8 (2010), 1462–1470 | MR | Zbl
[5] Kirsch A., “Characterization of the shape of the scattering obstacle by the spectral data of the far field operator”, Inverse Problems, 14 (1998), 1489–1512 | DOI | MR | Zbl
[6] Bruhl M., Hanke M., “Numerical implementation of two noniterative methods for locating inclusions by impedance tomography”, Inverse Problems, 16 (2000), 1029–1042 | DOI | MR
[7] Hofmann B., “Approximation of the inverse electrical impedance tomography problem by an inverse transmission problem”, Inverse Problems, 14 (1998), 1171–1187 | DOI | MR | Zbl
[8] Alessandrini G., Isakov V., “Analiticity and uniqueness for the inverse conductivity problem, I”, Rend. Ist. Mat. Univ. Trieste, 28 (1996) ; “II”, 351–369 | MR | Zbl
[9] Barceo B., Fabes E., Seo J. K., “The inverse conductivity problem with one measurement: uniqueness for convex polyhedra”, Proc. Amer. Math. Soc., 122:1 (1994), 183–189 | MR
[10] Bellout H., Friedman A., Isakov V., “Stability for an inverse problem in potential theory”, Trans. Amer. Math. Soc., 332 (1992), 271–296 | DOI | MR | Zbl
[11] Astala K., Paivarinta L., “Calderon's inverse conductivity problem in the plane”, Ann. Math., 163 (2006), 265–299 | DOI | MR | Zbl
[12] Kang H., Seo J. K., “Inverse conductivity problem with one measurement: uniqueness of balls in $R^3$”, SIAM J. Appl. Math., 59 (1999), 1533–1539 | DOI | MR | Zbl