Numerical methods for determining the inhomogeneity boundary in a boundary value problem for Laplace’s equation in a piecewise homogeneous medium
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 8, pp. 1476-1489 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A boundary value problem for Laplace’s equation in a bounded two-dimensional domain filled with a piecewise homogeneous medium is considered. The boundary of the inhomogeneity is assumed to be unknown. The inverse problem of determining the inhomogeneity boundary and the solution of the equation given the solution and its normal derivative on the boundary of the domain is discussed. Numerical methods are proposed for solving the inverse problem, and the results of numerical experiments are presented.
@article{ZVMMF_2011_51_8_a10,
     author = {S. V. Gavrilov and A. M. Denisov},
     title = {Numerical methods for determining the inhomogeneity boundary in a~boundary value problem for {Laplace{\textquoteright}s} equation in a~piecewise homogeneous medium},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1476--1489},
     year = {2011},
     volume = {51},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_8_a10/}
}
TY  - JOUR
AU  - S. V. Gavrilov
AU  - A. M. Denisov
TI  - Numerical methods for determining the inhomogeneity boundary in a boundary value problem for Laplace’s equation in a piecewise homogeneous medium
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2011
SP  - 1476
EP  - 1489
VL  - 51
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_8_a10/
LA  - ru
ID  - ZVMMF_2011_51_8_a10
ER  - 
%0 Journal Article
%A S. V. Gavrilov
%A A. M. Denisov
%T Numerical methods for determining the inhomogeneity boundary in a boundary value problem for Laplace’s equation in a piecewise homogeneous medium
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2011
%P 1476-1489
%V 51
%N 8
%U http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_8_a10/
%G ru
%F ZVMMF_2011_51_8_a10
S. V. Gavrilov; A. M. Denisov. Numerical methods for determining the inhomogeneity boundary in a boundary value problem for Laplace’s equation in a piecewise homogeneous medium. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 8, pp. 1476-1489. http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_8_a10/

[1] Eckel H., Kress R., “Nonlinear integral equations for the inverse electrical impedance problem”, Inverse Problems, 23 (2007), 475–491 | DOI | MR | Zbl

[2] Kwon O., Seo J. K., Yoon J. R., “A real-time algorithm for the location search of discontinuous conductivities with one measurement”, Communs. Pure and Appl. Math., 55:1 (2002), 1–29 | DOI | MR | Zbl

[3] Denisov A. M., Zakharov E. V., Kalinin A. V., Kalinin V. V., “Chislennye metody resheniya nekotorykh obratnykh zadach elektrofiziologii serdtsa”, Differents. ur-niya, 45:7 (2009), 1014–1022 | MR | Zbl

[4] Gavrilov S. V., Denisov A. M., “Chislennyi metod opredeleniya granitsy neodnorodnosti v zadache Dirikhle dlya uravneniya Laplasa v kusochno-odnorodnoi srede”, Zh. vychisl. matem. i matem. fiz., 50:8 (2010), 1462–1470 | MR | Zbl

[5] Kirsch A., “Characterization of the shape of the scattering obstacle by the spectral data of the far field operator”, Inverse Problems, 14 (1998), 1489–1512 | DOI | MR | Zbl

[6] Bruhl M., Hanke M., “Numerical implementation of two noniterative methods for locating inclusions by impedance tomography”, Inverse Problems, 16 (2000), 1029–1042 | DOI | MR

[7] Hofmann B., “Approximation of the inverse electrical impedance tomography problem by an inverse transmission problem”, Inverse Problems, 14 (1998), 1171–1187 | DOI | MR | Zbl

[8] Alessandrini G., Isakov V., “Analiticity and uniqueness for the inverse conductivity problem, I”, Rend. Ist. Mat. Univ. Trieste, 28 (1996) ; “II”, 351–369 | MR | Zbl

[9] Barceo B., Fabes E., Seo J. K., “The inverse conductivity problem with one measurement: uniqueness for convex polyhedra”, Proc. Amer. Math. Soc., 122:1 (1994), 183–189 | MR

[10] Bellout H., Friedman A., Isakov V., “Stability for an inverse problem in potential theory”, Trans. Amer. Math. Soc., 332 (1992), 271–296 | DOI | MR | Zbl

[11] Astala K., Paivarinta L., “Calderon's inverse conductivity problem in the plane”, Ann. Math., 163 (2006), 265–299 | DOI | MR | Zbl

[12] Kang H., Seo J. K., “Inverse conductivity problem with one measurement: uniqueness of balls in $R^3$”, SIAM J. Appl. Math., 59 (1999), 1533–1539 | DOI | MR | Zbl