Optimality parameter of Korobov parallelepipedal grids for cubature formulas
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 8, pp. 1363-1369 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

When multiple integrals are approximately evaluated using Korobov cubature formulas, it is necessary to introduce a parameter characterizing the uniform distribution of the grid nodes. A new parameter for Korobov parallelepipedal grids is proposed, and an algorithm for its computation is described.
@article{ZVMMF_2011_51_8_a0,
     author = {V. A. Bykovskii and S. V. Gassan},
     title = {Optimality parameter of {Korobov} parallelepipedal grids for cubature formulas},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1363--1369},
     year = {2011},
     volume = {51},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_8_a0/}
}
TY  - JOUR
AU  - V. A. Bykovskii
AU  - S. V. Gassan
TI  - Optimality parameter of Korobov parallelepipedal grids for cubature formulas
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2011
SP  - 1363
EP  - 1369
VL  - 51
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_8_a0/
LA  - ru
ID  - ZVMMF_2011_51_8_a0
ER  - 
%0 Journal Article
%A V. A. Bykovskii
%A S. V. Gassan
%T Optimality parameter of Korobov parallelepipedal grids for cubature formulas
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2011
%P 1363-1369
%V 51
%N 8
%U http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_8_a0/
%G ru
%F ZVMMF_2011_51_8_a0
V. A. Bykovskii; S. V. Gassan. Optimality parameter of Korobov parallelepipedal grids for cubature formulas. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 8, pp. 1363-1369. http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_8_a0/

[1] Korobov N. M., “O priblizhennom vychislenii kratnykh integralov”, Dokl. AN SSSR, 124:6 (1959), 1207–1210 | MR | Zbl

[2] Korobov N. M., Teoretiko-chislovye metody v priblizhennom analize, MTsNMO, M., 2004 | MR

[3] Haber S. Experiments on optimal coefficients, Applications of number theory to numerical analysis (Proc. Sympos., Univ. Montréal, Montreal, Que., 1971), Academic Press, New York, 1972, 11–37 | MR

[4] Hua Loo Keng, Wang Yuan, Applications of number theory to numerical analysis, Springer, Berlin, 1981 | MR

[5] Bakhvalov N. S., “O priblizhennom vychislenii kratnykh integralov”, Vestn. MGU, 1959, no. 4, 3–18 | MR

[6] Bykovskii V. A., “Algoritm vychisleniya lokalnykh minimumov reshetok”, Dokl. RAN, 399:5 (2004), 585–589 | MR

[7] Voronoi G. F., Sobranie sochinenii, v. 1, Kiev, 1952 pp.

[8] Minkowski H., “Generalization de la theorie des fraction continues”, Ann. Sci. Ecole Normal. Supl., 13:2 (1896), 41–60 | MR | Zbl

[9] Kassles Dzh., Vvedenie v geometriyu chisel, Mir, M., 1965 | MR

[10] Bykovskii V. A., “O pogreshnosti teoretiko-chislovykh kvadraturnykh formul”, Dokl. RAN, 389:2 (2003), 154–155 | MR | Zbl

[11] Hermite Ch., “Sur l'introduction des variables continues dans la theorie des nombres”, J. Math., 1851:41, 191–216 ; Qeuvres, v. I, Paris, 1905, 164–192 | Zbl

[12] Cohen H. A., Course in computational algebraic number theory, Graduate Texts Math., 138, Springer, Berlin-Heidelberg, 1993 | MR | Zbl