Weighted estimate for the convergence rate of a projection difference scheme for a quasilinear parabolic equation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 7, pp. 1294-1307 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A novel technique is proposed for analyzing the convergence of a projection difference scheme as applied to the initial value problem for a quasilinear parabolic operator-differential equation with initial data $u_0\in H$. The technique is based on the smoothing property of solutions to the differential problem for $t>0$. Under certain conditions on the nonlinear term, a new estimate of order $O(\sqrt\tau+h)$ for the convergence rate in a weighted energy norm is obtained without using a priori assumptions on the additional smoothness of weak solutions.
@article{ZVMMF_2011_51_7_a9,
     author = {V. A. Grebennikov and A. V. Razgulin},
     title = {Weighted estimate for the convergence rate of a~projection difference scheme for a~quasilinear parabolic equation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1294--1307},
     year = {2011},
     volume = {51},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_7_a9/}
}
TY  - JOUR
AU  - V. A. Grebennikov
AU  - A. V. Razgulin
TI  - Weighted estimate for the convergence rate of a projection difference scheme for a quasilinear parabolic equation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2011
SP  - 1294
EP  - 1307
VL  - 51
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_7_a9/
LA  - ru
ID  - ZVMMF_2011_51_7_a9
ER  - 
%0 Journal Article
%A V. A. Grebennikov
%A A. V. Razgulin
%T Weighted estimate for the convergence rate of a projection difference scheme for a quasilinear parabolic equation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2011
%P 1294-1307
%V 51
%N 7
%U http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_7_a9/
%G ru
%F ZVMMF_2011_51_7_a9
V. A. Grebennikov; A. V. Razgulin. Weighted estimate for the convergence rate of a projection difference scheme for a quasilinear parabolic equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 7, pp. 1294-1307. http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_7_a9/

[1] Zlotnik A. A., “Otsenka skorosti skhodimosti v $L_2$ proektsionno-raznostnykh skhem dlya parabolicheskikh uravnenii”, Zh. vychisl. matem. i matem. fiz., 18:6 (1978), 1454–1465 | MR | Zbl

[2] Zlotnik A. A., “Otsenka skorosti skhodimosti v $V_2(Q_T)$ proektsionno-raznostnykh skhem dlya parabolicheskikh uravnenii”, Vestn. MGU. Ser. 15. Vychisl. matem. i kibernetika, 1980, no. 1, 27–36 | MR

[3] Smagin V. V., “Otsenka skorosti skhodimosti proektsionnogo i proektsionno-raznostnogo metodov dlya slabo razreshimykh parabolicheskikh uravnenii”, Matem. sb., 188:3 (1997), 143–160 | MR

[4] Smagin V. V., “Koertsitivnye otsenki pogreshnostei proektsionnogo i proektsionno-raznostnogo metodov dlya parabolicheskikh uravnenii”, Matem. sb., 185:11 (1994), 79–94 | Zbl

[5] Razgulin A. V., “Approksimatsiya zadachi upravleniya preobrazovaniem argumentov v nelineinom parabolicheskom uravnenii”, Zh. vychisl. matem. i matem. fiz., 41:12 (2001), 1844–1856 | MR | Zbl

[6] Razgulin A. V., “Proektsionno-raznostnaya skhema dlya parabolicheskogo funktsionalno-differentsialnogo uravneniya s dvumernym preobrazovaniem argumentov”, Zh. vychisl. matem. i matem. fiz., 45:10 (2005), 1848–1859 | MR | Zbl

[7] Smagin V. V., Sotnikov D. S., “Srednekvadratichnye otsenki pogreshnosti proektsionno-raznostnogo metoda dlya slabo razreshimykh kvazilineinykh parabolicheskikh uravnenii”, Differents. ur-niya, 46:4 (2010), 595–603 | MR | Zbl

[8] Razgulin A. V., “Vesovaya otsenka skorosti skhodimosti proektsionno raznostnoi skhemy dlya parabolicheskogo uravneniya i ee primenenie dlya approksimatsii zadachi upravleniya nachalnymi dannymi”, Zh. vychisl. matem. i matem. fiz., 50:6 (2010), 1023–1037 | MR | Zbl

[9] Boyer F., Hubert F., Le Rousseau J., Uniform null-controllability properties for space/time-discretized parabolic equations, Preprint No. hal-00429191 CCSd (November 1, 2009)

[10] Babin A. V., Vishik M. I., Attractors of evolution equations, Studies in mathematics and its applications, 25, Elsevier, North Holland, 1992 | MR

[11] Temam R., Infinite-dimensional dynamical systems in mechanics and physics, Springer, New York, 1997 | MR

[12] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971 | Zbl

[13] Osipov Yu. S., Vasilev F. P., Potapov M. M., Osnovy metoda dinamicheskoi regulyarizatsii, Izd-vo MGU, M., 1999

[14] Yagi A., Abstract parabolic evolution equations and their applications, Springer monographs in mathematics, Springer, Berlin, 2010 | MR

[15] Razgulin A. V., Zadacha upravleniya preobrazovaniem argumentov v funktsionalno-differentsialnykh uravneniyakh matematicheskoi fiziki, MAKS-Press, M., 2006

[16] Syarle F., Metod konechnykh elementov dlya ellipticheskikh zadach, Mir, M., 1980 | MR

[17] Trenogin V. A., Funktsionalnyi analiz, Nauka, M., 1993 | MR | Zbl

[18] Vasilev F. P., Metody resheniya ekstremalnykh zadach, Faktorial, M., 2001 | Zbl

[19] Grebennikov V. A., “Spiral waves in the two-component feedback optical system”, Different. Equat. and Topology, Internat. Conf. Dedicated to Centennial Anniversary of L. S. Pontryagin, Abstracts (Moscow, June 17–22, 2008), MAKS Press, M., 2008, 45–46