Generalized solutions of initial-boundary value problems for second-order hyperbolic systems
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 7, pp. 1280-1293 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The method of boundary integral equations is developed as applied to initial–boundary value problems for strictly hyperbolic systems of second-order equations characteristic of anisotropic media dynamics. Based on the theory of distributions (generalized functions), solutions are constructed in the space of generalized functions followed by passing to integral representations and classical solutions. Solutions are considered in the class of singular functions with discontinuous derivatives, which are typical of physical problems describing shock waves. The uniqueness of the solutions to the initial–boundary value problems is proved under certain smoothness conditions imposed on the boundary functions. The Green's matrix of the system and new fundamental matrices based on it are used to derive integral analogues of the Gauss, Kirchhoff, and Green formulas for solutions and solving singular boundary integral equations.
@article{ZVMMF_2011_51_7_a8,
     author = {L. A. Alexeyeva and G. K. Zakir'yanova},
     title = {Generalized solutions of initial-boundary value problems for second-order hyperbolic systems},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1280--1293},
     year = {2011},
     volume = {51},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_7_a8/}
}
TY  - JOUR
AU  - L. A. Alexeyeva
AU  - G. K. Zakir'yanova
TI  - Generalized solutions of initial-boundary value problems for second-order hyperbolic systems
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2011
SP  - 1280
EP  - 1293
VL  - 51
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_7_a8/
LA  - ru
ID  - ZVMMF_2011_51_7_a8
ER  - 
%0 Journal Article
%A L. A. Alexeyeva
%A G. K. Zakir'yanova
%T Generalized solutions of initial-boundary value problems for second-order hyperbolic systems
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2011
%P 1280-1293
%V 51
%N 7
%U http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_7_a8/
%G ru
%F ZVMMF_2011_51_7_a8
L. A. Alexeyeva; G. K. Zakir'yanova. Generalized solutions of initial-boundary value problems for second-order hyperbolic systems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 7, pp. 1280-1293. http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_7_a8/

[1] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Nauka, M., 1981 | MR

[2] Alekseeva L. A., “GIU nachalno-kraevykh zadach dlya reshenii volnovogo uravneniya”, Differents. ur-niya, 28:8 (1992), 1451–1454 | MR

[3] Alekseeva L. A., “Metod obobschennykh funktsii v nestatsionarnykh kraevykh zadachakh dlya volnovogo uravneniya”, Matem. zhurnal. Almaty, 6:1(19) (2006), 16–32 | MR | Zbl

[4] Alekseeva L. A., “Analogi formul Kirkhgofa i Somilyany v ploskikh zadachakh elastodinamiki”, Prikl. matem. i mekhan., 55:2 (1991), 298–308 | MR | Zbl

[5] Aitaliev Sh. M., Alekseeva L. A., Dildabaev Sh. A., Zhanbyrbaev N. B., Metod granichnykh integralnykh uravnenii v zadachakh dinamiki uprugikh mnogosvyaznykh tel, Gylym, Alma-Ata, 1992 | MR

[6] Alekseeva L. A., Zakiryanova G. K., “Dinamicheskie analogi formul Somilyany dlya nestatsionarnoi dinamiki uprugikh sred s proizvolnoi stepenyu anizotropii”, Prikl. matem. i mekhan., 58:2 (1994), 197–202 | MR

[7] Alexeyeva L. A., Dildabayev Sh. A., Zakir'yanova G. K., Zhanbyrbayev A. B., “Boundary integral equations method in two- and three dimensional problems of electrodynamics”, Internat. J. Comput. Mech., 18:2 (1996), 147–157 | MR

[8] Alekseeva L. A., Zakiryanova G. K., “Fundamentalnye resheniya giperbolicheskikh sistem vtorogo poryadka”, Differents. ur-niya, 37:4 (2001), 488–494 | MR | Zbl

[9] Khermander L., Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi, v. 1, Mir, M., 1986

[10] Kech V., Teodoresku P., Vvedenie v teoriyu obobschennykh funktsii s prilozheniyami v tekhnike, Mir, M., 1978 | MR