A class of one-step one-stage methods for stiff systems of ordinary differential equations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 7, pp. 1251-1265 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A new class of one-step one-stage methods ($ABC$-schemes) designed for the numerical solution of stiff initial value problems for ordinary differential equations is proposed and studied. The Jacobian matrix of the underlying differential equation is used in $ABC$-schemes. They do not require iteration: a system of linear algebraic equations is once solved at each integration step. $ABC$-schemes are $A$- and $L$-stable methods of the second order, but there are $ABC$-schemes that have the fourth order for linear differential equations. Some aspects of the implementation of $ABC$-schemes are discussed. Numerical results are presented, and the schemes are compared with other numerical methods.
@article{ZVMMF_2011_51_7_a6,
     author = {M. V. Bulatov and A. V. Tygliyan and S. S. Filippov},
     title = {A~class of one-step one-stage methods for stiff systems of ordinary differential equations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1251--1265},
     year = {2011},
     volume = {51},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_7_a6/}
}
TY  - JOUR
AU  - M. V. Bulatov
AU  - A. V. Tygliyan
AU  - S. S. Filippov
TI  - A class of one-step one-stage methods for stiff systems of ordinary differential equations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2011
SP  - 1251
EP  - 1265
VL  - 51
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_7_a6/
LA  - ru
ID  - ZVMMF_2011_51_7_a6
ER  - 
%0 Journal Article
%A M. V. Bulatov
%A A. V. Tygliyan
%A S. S. Filippov
%T A class of one-step one-stage methods for stiff systems of ordinary differential equations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2011
%P 1251-1265
%V 51
%N 7
%U http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_7_a6/
%G ru
%F ZVMMF_2011_51_7_a6
M. V. Bulatov; A. V. Tygliyan; S. S. Filippov. A class of one-step one-stage methods for stiff systems of ordinary differential equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 7, pp. 1251-1265. http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_7_a6/

[1] Shtetter Kh., Analiz metodov diskretizatsii dlya obyknovennykh differentsialnykh uravnenii, Mir, M., 1978 | MR

[2] Rakitskii Yu. V., Ustinov S. M., Chernorutskii I. G., Chislennye metody resheniya zhestkikh sistem, Nauka, M., 1979 | MR

[3] Dzh. Kholl, Dzh. Uatt (red.), Sovremennye chislennye metody resheniya obyknovennykh differentsialnykh uravnenii, Mir, M., 1979

[4] Khairer E., Nersett S., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii. Nezhestkie zadachi, Mir, M., 1990 | MR

[5] Khairer E., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii. Zhestkie i differentsialno-algebraicheskie zadachi, Mir, M., 1999

[6] Dekker K., Verver Ya., Ustoichivost metodov Runge–Kutty dlya zhestkikh nelineinykh differentsialnykh uravnenii, Mir, M., 1988 | MR

[7] Verwer J. G., Hundsdorfer W. H., Sommeijer B. P., “Convergence properties of the Runge–Kutta–Chebyshev method”, Numer. Math., 57 (1990), 157–178 | DOI | MR | Zbl

[8] Lebedev V. I., “Kak reshat yavnymi metodami zhestkie sistemy differentsialnykh uravnenii”, Vychisl. protsessy i sistemy, 8, Nauka, M., 1991, 237–291 | MR

[9] Novikov E. A., Yavnye metody dlya zhestkikh sistem, Nauka, Novosibirsk, 1997 | MR

[10] Skvortsov L. M., “Yavnye metody Runge–Kutty dlya umerenno zhestkikh zadach”, Zh. vychisl. matem. i matem. fiz., 45:11 (2005), 2017–2030 | MR | Zbl

[11] Rosenbrock H. H., “Some general implicit processes for the numerical solution of differential equations”, Computer J., 5 (1962/63), 329–330 | DOI | MR

[12] Bulatov M. V., “Ob odnom podkhode k chislennomu resheniyu ODU”, Tezisy dokl. “Lyapunovskie chteniya i prezentatsiya informatsionnykh tekhnologii” (Irkutsk, 2001), 10

[13] Filippov S. S., Bulatov M. V., “One-step one-stage methods of order 2 and 3 for stiff ODEs”, Conf. Scient. Comput. (Geneva, Switzerland), 2002, 26

[14] Bulatov M. V., “O postroenii 1-stadiinogo $L$-ustoichivogo metoda vtorogo poryadka”, Differents. ur-niya, 39:4 (2003), 554–556 | MR | Zbl

[15] Filippov S. S., “$ABC$-skhemy dlya zhestkikh sistem obyknovennykh differentsialnykh uravnenii”, Dokl. RAN, 399:2 (2004), 170–172 | MR

[16] Bulatov M. V., “Ob odnom podkhode k postroeniyu novykh raznostnykh skhem dlya lineinykh ODU”, Tr. XIII Baikalskoi mezhdunar. shkoly-seminara “Metody optimizatsii i ikh prilozh.” (Irkutsk, 2005), 3, 55–59

[17] Bulatov M. V., “Postroenie neklassicheskikh raznostnykh mnogoshagovykh skhem dlya lineinykh ODU”, Dokl. RAN, 404:1 (2005), 11–13 | MR | Zbl

[18] Bulatov M. V., “O postroenii neklassicheskikh raznostnykh skhem dlya obyknovennykh differentsialnykh uravnenii”, Differents. ur-niya, 44:4 (2008), 546–557 | MR

[19] Filippov S. S., Tygliyan A. V., “$ABC$-skhemy dlya chislennogo resheniya zhestkikh zadach”, Tr. mezhdunar. konf. “Vychisl. matem., differents. ur-niya, inform. tekhnologii”, Izd-vo VSGTU, Ulan-Ude, 2009, 377–383

[20] Filippov S. S., Tygliyan A. V., “A class of linearly implicit numerical methods for solving stiff ordinary differential equations”, Open Numer. Meth. J., 2 (2010), 1–5 | DOI | MR

[21] Streng G., Lineinaya algebra i ee primeneniya, Mir, M., 1980 | MR

[22] Kaps P., Rosenbrock-type methods, Numer. Meth. Solving Stiff Initial Value Problems. Berithct Nr. 9, Inst. Geometrie und praktische Math. der RWTH, Aachen, 1981

[23] Kreiss H. O., “Difference methods for stiff ordinary differential equations”, SIAM J. Numer. Analys., 15 (1978), 21–58 | DOI | MR | Zbl

[24] Verwer J. G., “Instructive experiments with some Runge–Kutta–Rosenbrock methods”, Comput. and Math. Appls., 8 (1982), 217–229 | DOI | MR | Zbl

[25] Aladev V. Z., Sistemy kompyuternoi algebry: MAPLIE. Iskusstvo programmirovaniya, Laboratoriya bazovykh znanii, M., 2009