On the application of Newton-type methods to Fritz John optimality conditions
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 7, pp. 1194-1208 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An approach to the numerical solution of optimization problems with equality constraints violating the traditional constraint qualification is developed. According to this approach, an (overdetermined) defining system is constructed based on the Fritz John optimality conditions and the Gauss–Newton method is applied to this system. The assumptions required for the implementability and local superlinear convergence of the resulting algorithm are completely characterized in terms of the original problem.
@article{ZVMMF_2011_51_7_a2,
     author = {A. F. Izmailov and E. I. Uskov},
     title = {On the application of {Newton-type} methods to {Fritz} {John} optimality conditions},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1194--1208},
     year = {2011},
     volume = {51},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_7_a2/}
}
TY  - JOUR
AU  - A. F. Izmailov
AU  - E. I. Uskov
TI  - On the application of Newton-type methods to Fritz John optimality conditions
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2011
SP  - 1194
EP  - 1208
VL  - 51
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_7_a2/
LA  - ru
ID  - ZVMMF_2011_51_7_a2
ER  - 
%0 Journal Article
%A A. F. Izmailov
%A E. I. Uskov
%T On the application of Newton-type methods to Fritz John optimality conditions
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2011
%P 1194-1208
%V 51
%N 7
%U http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_7_a2/
%G ru
%F ZVMMF_2011_51_7_a2
A. F. Izmailov; E. I. Uskov. On the application of Newton-type methods to Fritz John optimality conditions. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 7, pp. 1194-1208. http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_7_a2/

[1] Izmailov A. F., Solodov M. V., Chislennye metody optimizatsii, Izd. 2-e, pererab. i dop., Fizmatlit, M., 2008

[2] Ortega Dzh., Reinboldt V., Iteratsionnye metody resheniya nelineinykh sistem uravnenii so mnogimi neizvestnymi, Mir, M., 1975 | MR

[3] Golishnikov M. M., Izmailov A. F., “Nyutonovskie metody dlya zadach uslovnoi optimizatsii s neregulyarnymi ogranicheniyami”, Zh. vychisl. matem. i matem. fiz., 46:8 (2006), 1369–1391 | MR

[4] Izmailov A. F., Tretyakov A. A., 2-Regulyarnye resheniya nelineinykh zadach. Teoriya i chislennye metody, Fizmatlit, M., 1999 | MR

[5] Brezhneva O. A., Izmailov A. F., Tretyakov A. A., Khmura A., “Odin podkhod k poisku osobykh reshenii sistemy nelineinykh uravnenii obschego vida”, Zh. vychisl. matem. i matem. fiz., 40:3 (2000), 365–377 | MR | Zbl

[6] Izmailov A. F., “Ob odnom klasse opredelyayuschikh sistem dlya osobykh reshenii nelineinykh uravnenii”, Vopr. modelirovaniya i analiza v zadachakh prinyatiya reshenii, VTs RAN, M., 2002, 18–57

[7] Brezhneva O. A., Izmailov A. F., “O postroenii opredelyayuschikh sistem dlya otyskaniya osobykh reshenii nelineinykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 42:1 (2002), 10–22 | MR | Zbl

[8] Erina M. Yu., Izmailov A. F., “Metod Gaussa–Nyutona dlya otyskaniya osobykh reshenii sistem nelineinykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 47:5 (2007), 784–795 | MR

[9] Brezhneva O. A., Tret'yakov A. A., “Come back to Lagrange. The $p$-factor analysis of optimality conditions”, Numer. Function Analys. Optimizat., 31:8 (2010), 871–891 | DOI | MR | Zbl

[10] Izmailov A. F., “Ob analiticheskoi i vychislitelnoi ustoichivosti kriticheskikh mnozhitelei Lagranzha”, Zh. vychisl. matem. i matem. fiz., 45:6 (2005), 966–982 | MR | Zbl

[11] Izmailov A. F., Solodov M. V., “On attraction of Newton-type iterates to multipliers violating second-order sufficiency conditions”, Math. Program., 117:1–2 (2009), 271–304 | DOI | MR | Zbl

[12] Izmailov A. F., Solodov M. V., “Examples of dual behaviour of Newton-type methods on optimization problems with degenerate constraints”, Comput. Optimizat. Appl., 42:2 (2009), 231–264 | DOI | MR | Zbl

[13] Izmailov A. F., Solodov M. V., “On attraction of linearly constrained Lagrangian methods and of stabilized and quasi-Newton SQP methods to critical multipliers”, Math. Program., 2009 | DOI | MR

[14] Ismailov A. F., Solodov M. V., “Newton-type methods for optimization problems without constraint qualifications”, SIAM J. Optimizat., 15:1 (2004), 210–228 | DOI | MR

[15] Nocedal J., Wright M. J., Numerical optimization, Sec. ed., Springer Science+Business Media, LLC, New York, 2006 | MR

[16] http://w3.impa.br/~optim/DEGEN_collection.zip

[17] Bonnans J. F., Shapiro A., “Optimization problems with perturbations: a guided tour”, SIAM Rev., 40 (1998), 228–264 | DOI | MR | Zbl

[18] Dolan E. D., Morè J. J., “Benchmarking optimization software with performance profiles”, Math. Program., 91:2 (2002), 201–213 | DOI | MR | Zbl