Numerical study of radiometric forces via the direct solution of the Boltzmann kinetic equation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 7, pp. 1339-1355 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The two-dimensional rarefied gas motion in a Crookes radiometer and the resulting radiometric forces are studied by numerically solving the Boltzmann kinetic equation. The collision integral is directly evaluated using a projection method, and second-order accurate TVD schemes are used to solve the advection equation. The radiometric forces are found as functions of the Knudsen number and the temperatures, and their spatial distribution is analyzed.
@article{ZVMMF_2011_51_7_a13,
     author = {Yu. A. Anikin},
     title = {Numerical study of radiometric forces via the direct solution of the {Boltzmann} kinetic equation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1339--1355},
     year = {2011},
     volume = {51},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_7_a13/}
}
TY  - JOUR
AU  - Yu. A. Anikin
TI  - Numerical study of radiometric forces via the direct solution of the Boltzmann kinetic equation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2011
SP  - 1339
EP  - 1355
VL  - 51
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_7_a13/
LA  - ru
ID  - ZVMMF_2011_51_7_a13
ER  - 
%0 Journal Article
%A Yu. A. Anikin
%T Numerical study of radiometric forces via the direct solution of the Boltzmann kinetic equation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2011
%P 1339-1355
%V 51
%N 7
%U http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_7_a13/
%G ru
%F ZVMMF_2011_51_7_a13
Yu. A. Anikin. Numerical study of radiometric forces via the direct solution of the Boltzmann kinetic equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 7, pp. 1339-1355. http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_7_a13/

[1] Maxwell J. C., “On stresses in rarified gases arising from inequalities of temperature”, Philos. Trans. R. Soc. London, 170 (1879), 231 | DOI

[2] Einstein A., “Zur Theorie der Radimeterkräfte”, Z. Phys., 27 (1924), 1 | DOI | Zbl

[3] Knudsen M., The Kinetic Theory of Gases, Methuen Co. Ltd., London, 1950

[4] Loyalka S. K., “Knudsen forces in vacuum microbalance”, J. Chem. Phys., 66 (1977), 4935 | DOI

[5] Han L. H., Wu S. M., Condit J. C. et al., “Light-powered micromotor driven by geometry-assisted, asymmetric photon-heating and subsequent gas convection”, Appl. Phys. Lett., 96 (2010), 213509 | DOI

[6] Ota M., Nakao T., Sakamoto M., “Numerical simulation of molecular motion around laser microengine blades”, Math. and Comput. Simulation, 55 (2001), 223–230 | DOI | MR | Zbl

[7] Cheremisin F. G., “A Conservative method for calculation of the Boltzmann collision integral”, Dokl. Phys., 42:11 (1997), 607–610 | MR

[8] Tcheremissine F., “Direct numerical solutuion of the Botrzmann equation”, Rarefied Gas Dynamics, 24-th Internat. Symposium on Rarefied Gas Dynamics, AIP Conf. Proc., 762, Melville, N.Y., 2005, 667–685

[9] Kogan M. N., Dinamika razrezhennogo gaza, Nauka, M., 1967

[10] Landau L. D., Lifshits E. M., Teoreticheskaya fizika, 10, Fizmatlit, M., 2001

[11] Maitland G. C., Rigby M., Smith E. B. et al., W. A. Intermolecular forces: Their origin and determination, Claredon, Oxford, 1981

[12] Neufeld P. D., Lanzcu A. R., Aziz R., “Empirical equations to calculate 16 of the transport collision integrals $\Omega^{(l,s)}$ for the Lennard–Jones (12-6)”, Potential. J. Chem. Phys., 57 (1972), 1100–1102

[13] Harten A., “High resolution schemes for hyperbolic conservation laws”, J. Comput. Phys., 49 (1983), 357–393 | DOI | MR | Zbl

[14] Sweby P. K., “High resolution schemes using flux-limiters for hyperbolic conservation laws”, SIAM J. Numer. Abalysis., 21 (1984), 995–1011 | DOI | MR | Zbl

[15] Korobov N. M., Trigonometricheskie summy i ikh prilozheniya, Nauka, M., 1989 | MR | Zbl

[16] Passian A. et al., “Thermal transpiration at the microscale: A crookes cantilever”, Phys. Rev. Lett., 90 (2003), 124–503 | DOI

[17] Gimelshein N., Gimelshein S., Selden N. et al., “Modeling of low-speed rarefied gas flows using a combined ES-BGK/DSMC approach”, Vacuum, 85:2 (2010), 115–119 | DOI