@article{ZVMMF_2011_51_7_a13,
author = {Yu. A. Anikin},
title = {Numerical study of radiometric forces via the direct solution of the {Boltzmann} kinetic equation},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1339--1355},
year = {2011},
volume = {51},
number = {7},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_7_a13/}
}
TY - JOUR AU - Yu. A. Anikin TI - Numerical study of radiometric forces via the direct solution of the Boltzmann kinetic equation JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2011 SP - 1339 EP - 1355 VL - 51 IS - 7 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_7_a13/ LA - ru ID - ZVMMF_2011_51_7_a13 ER -
%0 Journal Article %A Yu. A. Anikin %T Numerical study of radiometric forces via the direct solution of the Boltzmann kinetic equation %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2011 %P 1339-1355 %V 51 %N 7 %U http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_7_a13/ %G ru %F ZVMMF_2011_51_7_a13
Yu. A. Anikin. Numerical study of radiometric forces via the direct solution of the Boltzmann kinetic equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 7, pp. 1339-1355. http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_7_a13/
[1] Maxwell J. C., “On stresses in rarified gases arising from inequalities of temperature”, Philos. Trans. R. Soc. London, 170 (1879), 231 | DOI
[2] Einstein A., “Zur Theorie der Radimeterkräfte”, Z. Phys., 27 (1924), 1 | DOI | Zbl
[3] Knudsen M., The Kinetic Theory of Gases, Methuen Co. Ltd., London, 1950
[4] Loyalka S. K., “Knudsen forces in vacuum microbalance”, J. Chem. Phys., 66 (1977), 4935 | DOI
[5] Han L. H., Wu S. M., Condit J. C. et al., “Light-powered micromotor driven by geometry-assisted, asymmetric photon-heating and subsequent gas convection”, Appl. Phys. Lett., 96 (2010), 213509 | DOI
[6] Ota M., Nakao T., Sakamoto M., “Numerical simulation of molecular motion around laser microengine blades”, Math. and Comput. Simulation, 55 (2001), 223–230 | DOI | MR | Zbl
[7] Cheremisin F. G., “A Conservative method for calculation of the Boltzmann collision integral”, Dokl. Phys., 42:11 (1997), 607–610 | MR
[8] Tcheremissine F., “Direct numerical solutuion of the Botrzmann equation”, Rarefied Gas Dynamics, 24-th Internat. Symposium on Rarefied Gas Dynamics, AIP Conf. Proc., 762, Melville, N.Y., 2005, 667–685
[9] Kogan M. N., Dinamika razrezhennogo gaza, Nauka, M., 1967
[10] Landau L. D., Lifshits E. M., Teoreticheskaya fizika, 10, Fizmatlit, M., 2001
[11] Maitland G. C., Rigby M., Smith E. B. et al., W. A. Intermolecular forces: Their origin and determination, Claredon, Oxford, 1981
[12] Neufeld P. D., Lanzcu A. R., Aziz R., “Empirical equations to calculate 16 of the transport collision integrals $\Omega^{(l,s)}$ for the Lennard–Jones (12-6)”, Potential. J. Chem. Phys., 57 (1972), 1100–1102
[13] Harten A., “High resolution schemes for hyperbolic conservation laws”, J. Comput. Phys., 49 (1983), 357–393 | DOI | MR | Zbl
[14] Sweby P. K., “High resolution schemes using flux-limiters for hyperbolic conservation laws”, SIAM J. Numer. Abalysis., 21 (1984), 995–1011 | DOI | MR | Zbl
[15] Korobov N. M., Trigonometricheskie summy i ikh prilozheniya, Nauka, M., 1989 | MR | Zbl
[16] Passian A. et al., “Thermal transpiration at the microscale: A crookes cantilever”, Phys. Rev. Lett., 90 (2003), 124–503 | DOI
[17] Gimelshein N., Gimelshein S., Selden N. et al., “Modeling of low-speed rarefied gas flows using a combined ES-BGK/DSMC approach”, Vacuum, 85:2 (2010), 115–119 | DOI