Numerical study of Peakons and $k$-Solitons of the Camassa–Holm and Holm–Hone equations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 7, pp. 1317-1325
Cet article a éte moissonné depuis la source Math-Net.Ru
The spectral Fourier and Runge–Kutta methods are used to study the Camassa–Holm and Holm–Hone equations numerically. Numerical results for problems with initial data leading to the generation and interaction of peakons and $k$-solitons are discussed.
@article{ZVMMF_2011_51_7_a11,
author = {S. P. Popov},
title = {Numerical study of {Peakons} and $k${-Solitons} of the {Camassa{\textendash}Holm} and {Holm{\textendash}Hone} equations},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1317--1325},
year = {2011},
volume = {51},
number = {7},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_7_a11/}
}
TY - JOUR AU - S. P. Popov TI - Numerical study of Peakons and $k$-Solitons of the Camassa–Holm and Holm–Hone equations JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2011 SP - 1317 EP - 1325 VL - 51 IS - 7 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_7_a11/ LA - ru ID - ZVMMF_2011_51_7_a11 ER -
%0 Journal Article %A S. P. Popov %T Numerical study of Peakons and $k$-Solitons of the Camassa–Holm and Holm–Hone equations %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2011 %P 1317-1325 %V 51 %N 7 %U http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_7_a11/ %G ru %F ZVMMF_2011_51_7_a11
S. P. Popov. Numerical study of Peakons and $k$-Solitons of the Camassa–Holm and Holm–Hone equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 7, pp. 1317-1325. http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_7_a11/
[1] Camassa R., Holm D., “An intergrable shallow water equation with peaked soliton”, Phys. Rev. Letts, 71 (1993), 1661–1664 | DOI | MR | Zbl
[2] Kholm D. D., Khon A. N. V., “Integriruemost uravneniya pyatogo poryadka s integriruemoi dinamikoi dvukh tel”, Teoret. i matem. fiz., 137:1 (2003), 121–136 | MR
[3] Dai Hui-Hui, Li Yishen, “The interaction of the $\omega$-soliton and $\omega$-cuspon of the Camassa–Holm equation”, J. Phys. A: Math. Gen., 42 (2005), L685–L694 | DOI | MR | Zbl
[4] Zhou Y., “Wave breaking for shallow water equation”, Nonlinear Analys., 57 (2004), 137–152 | DOI | MR | Zbl