Basis difference method for orthogonal systems on a surface
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 7, pp. 1308-1316 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The basis operator method intended for constructing systems of difference approximations to differential operators in vector and tensor analysis is extended to orthogonal systems on a surface. A class of completely conservative differential-difference schemes for continuum mechanics in Lagrangian variables is constructed. Basis operators are constructed using the finite volume equation, consistency conditions for discrete operators of the first derivative, and consistent projection operators for grid functions. A system of differential-difference continuum mechanics equations on a surface is obtained, which implies all conservation laws typical of the continuum case, including additional ones. A stability estimate is derived for discrete equations of an incompressible viscous fluid.
@article{ZVMMF_2011_51_7_a10,
     author = {V. A. Korobitsyn},
     title = {Basis difference method for orthogonal systems on a~surface},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1308--1316},
     year = {2011},
     volume = {51},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_7_a10/}
}
TY  - JOUR
AU  - V. A. Korobitsyn
TI  - Basis difference method for orthogonal systems on a surface
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2011
SP  - 1308
EP  - 1316
VL  - 51
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_7_a10/
LA  - ru
ID  - ZVMMF_2011_51_7_a10
ER  - 
%0 Journal Article
%A V. A. Korobitsyn
%T Basis difference method for orthogonal systems on a surface
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2011
%P 1308-1316
%V 51
%N 7
%U http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_7_a10/
%G ru
%F ZVMMF_2011_51_7_a10
V. A. Korobitsyn. Basis difference method for orthogonal systems on a surface. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 7, pp. 1308-1316. http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_7_a10/

[1] Godunov S. K., Zabrodin A. V., Ivanov M. Ya. i dr., Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki, Nauka, M., 1976 | MR | Zbl

[2] Samarskii A. A., Koldoba A. V., Poveschenko Yu. A. i dr., Raznostnye skhemy na neregulyarnykh setkakh, Izd-vo BGU, Minsk, 1996

[3] Shokin Yu. I., Yanenko N. N., Metod differentsialnogo priblizheniya, Nauka, Novosibirsk, 1985 | MR | Zbl

[4] Kovenya V. M., Yanenko N. N., Metod rasschepleniya v zadachakh gazovoi dinamiki, Nauka, Novosibirsk, 1980 | MR

[5] Shashkov M., Conservative finite-difference methods on general grids, CRC Press, New York, 1996 | MR | Zbl

[6] Samarskii A. A., Popov Yu. P., Raznostnye metody resheniya zadach gazovoi dinamiki, Nauka, M., 1980 | MR

[7] Margolin L. G., Shashkov M. J., “Using a curvilinear grid to construct symmetry-preserving discretizations for Lagrangian gas dynamics”, J. Comput. Phys., 149 (1999), 389–417 | DOI | MR | Zbl

[8] Korobitsyn V. A., “Metod bazisnykh operatorov postroeniya raznostnykh skhem v krivolineinoi ortogonalnoi sisteme koordinat”, Matem. modelirovanie, 2:6 (1990), 110–117 | MR | Zbl

[9] Korobitsyn V. A., “Polnostyu konservativnye osesimmetrichnye raznostnye skhemy v krivolineinykh ortogonalnykh sistemakh koordinat”, Zh. vychisl. matem. i matem. fiz., 32:5 (1992), 810–815 | MR | Zbl

[10] Korobitsyn V. A., “Metod bazisnykh operatorov postroeniya raznostnykh skhem v neortogonalnykh sistemakh koordinat na ploskosti”, Matem. modelirovanie, 3:10 (1991), 31–41 | MR | Zbl

[11] Korobitsyn V. A., “Zakony sokhraneniya v diskretnykh modelyakh sploshnoi sredy”, Chisl. metody mekhan. sploshnoi sredy, 17, no. 4, ITPM SO AN SSSR, Novosibirsk, 1986, 77–101

[12] Pogorelov A. V., Differentsialnaya geometriya, Nauka, M., 1969 | MR

[13] Ibragimov N. Kh., “Zakony sokhraneniya v gidrodinamike”, Dokl. AN SSSR, 210:6 (1973), 1307–1309 | MR | Zbl