On a class of nonlocal parabolic equations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 6, pp. 1056-1063
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a boundary value problem for parabolic equations with nonlocal nonlinearity of such a form that favorably differs from other equations in that it leads to partial differential equations that have important properties of ordinary differential equations. Local solvability and uniqueness theorems are proved, and an analog of the Painlevé singular nonfixed points theorem is proved. In this case, there is an alternative – either a solution exists for all $t\ge0$ or it goes to infinity in a finite time $t=T$ (blowup mode). Sufficient conditions for the existence of a blowup mode are given.
@article{ZVMMF_2011_51_6_a7,
author = {A. N. Bogolyubov and M. D. Malykh},
title = {On a~class of nonlocal parabolic equations},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1056--1063},
publisher = {mathdoc},
volume = {51},
number = {6},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_6_a7/}
}
TY - JOUR AU - A. N. Bogolyubov AU - M. D. Malykh TI - On a class of nonlocal parabolic equations JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2011 SP - 1056 EP - 1063 VL - 51 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_6_a7/ LA - ru ID - ZVMMF_2011_51_6_a7 ER -
A. N. Bogolyubov; M. D. Malykh. On a class of nonlocal parabolic equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 6, pp. 1056-1063. http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_6_a7/