Stable smoothing method for solving a model mechanical problem with friction
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 6, pp. 1032-1042 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A solution algorithm with a modified Lagrangian functional is studied as applied to a semicoercive model problem with friction.
@article{ZVMMF_2011_51_6_a5,
     author = {N. N. Kushniruk and R. V. Namm and A. S. Tkachenko},
     title = {Stable smoothing method for solving a~model mechanical problem with friction},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1032--1042},
     year = {2011},
     volume = {51},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_6_a5/}
}
TY  - JOUR
AU  - N. N. Kushniruk
AU  - R. V. Namm
AU  - A. S. Tkachenko
TI  - Stable smoothing method for solving a model mechanical problem with friction
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2011
SP  - 1032
EP  - 1042
VL  - 51
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_6_a5/
LA  - ru
ID  - ZVMMF_2011_51_6_a5
ER  - 
%0 Journal Article
%A N. N. Kushniruk
%A R. V. Namm
%A A. S. Tkachenko
%T Stable smoothing method for solving a model mechanical problem with friction
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2011
%P 1032-1042
%V 51
%N 6
%U http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_6_a5/
%G ru
%F ZVMMF_2011_51_6_a5
N. N. Kushniruk; R. V. Namm; A. S. Tkachenko. Stable smoothing method for solving a model mechanical problem with friction. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 6, pp. 1032-1042. http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_6_a5/

[1] Glavachek I., Gaslinger Ya., Nechas I., Lovishek Ya., Reshenie variatsionnykh neravenstv v mekhanike, Mir, M., 1986

[2] Glowinski R., Numerical methods for nonlinear variational problems, Springer, New York, 1984 | Zbl

[3] Kikuchi N., Oden T., Contact problem in elasticity: a study of variational inequalities and finite element methods, SIAM, Philadelphia, 1988 | Zbl

[4] Golshtein E. G., Tretyakov N. V., Modifitsirovannye funktsii Lagranzha. Teoriya i metody optimizatsii, Nauka, M., 1989

[5] Izmailov A. F., Solodov M. V., Chislennye metody optimizatsii, Fizmatlit, M., 2003

[6] Bertsekas D. P., Nonlinear programming, Athena Scient., Belmont, Massachusetts, 1999 | Zbl

[7] Antipin A. S., Metody nelineinogo programmirovaniya, osnovannye na pryamoi i dvoistvennoi modifikatsii funktsii Lagranzha, Preprint VNII sistemnykh issledovanii, M., 1979

[8] Bertsekas D., Uslovnaya optimizatsiya i metody mnozhitelei Lagranzha, Radio i svyaz, M., 1987 | Zbl

[9] Rokafellar R. T., Vypuklyi analiz, Mir, M., 1973

[10] Grossman K., Kaplan A. A., Nelineinoe programmirovanie na osnove bezuslovnoi optimizatsii, Nauka, SO, Novosibirsk, 1981 | Zbl

[11] Kazufumi Ito, Kunisch K., “Augmented Lagrangian methods for nonsmooth, convex optimization in Hilbert spaces”, Nonlinear analysis, 41 (2000), 591–616 | DOI | MR | Zbl

[12] Namm R. V., “O edinstvennosti gladkogo resheniya v statisticheskoi zadache s treniem po zakonu Kulona i dvustoronnim kontaktom”, Prikl. matem. i mekhan., 59:2 (1995), 330–335 | MR | Zbl

[13] Kushniruk N. N., Namm R. V., “Metod mnozhitelei Lagranzha dlya resheniya polukoertsitivnoi modelnoi zadachi s treniem”, Sibirskii zhurnal vychisl. matem., 12:4 (2009), 409–420 | Zbl

[14] Kushniruk N. N., “Metod Udzavy s modifitsirovannoi funktsiei Lagranzha dlya resheniya zadachi o dvizhenii zhidkosti v beskonechnoi trube s treniem na granitse”, Informatika i sistemy upravleniya, 2009, no. 1(19), 3–14

[15] Kushniruk N. N., Optimizatsionnye metody resheniya variatsionnykh neravenstv, Dis. $\dots$ kand. fiz.-matem. nauk, TOGU, Khabarovsk, 2010

[16] Vu G., Kim S., Namm R. V., Sachkov S. A., “Metod iterativnoi proksimalnoi regulyarizatsii dlya poiska sedlovoi tochki v polukoertsitivnoi zadache Sinorini”, Zh. vychisl. matem. i matem. fiz., 46:11 (2006), 2024–2031 | MR

[17] Vikhtenko E. M., Namm R. V., “Skhema dvoistvennosti dlya resheniya polukoertsitivnoi zadachi Sinorini s treniem”, Zh. vychisl. matem. i matem. fiz., 47:12 (2007), 2023–2036 | MR

[18] Vikhtenko E. M., Namm R. V., “Iterativnaya proksimalnaya regulyarizatsiya modifitsirovannogo funktsionala Lagranzha dlya resheniya kvazivariatsionnogo neravenstva Sinorini”, Zh. vychisl. matem. i matem. fiz., 48:9 (2008), 1571–1579 | MR

[19] Dyuvo G., Lions Zh.-L., Neravenstva v mekhanike i fizike, Mir, M., 1980

[20] Polyak B. T., Vvedenie v optimizatsiyu, Nauka, M., 1983

[21] Vasilev F. P., Chislennye metody resheniya ekstremalnykh zadach, Nauka, M., 1980