@article{ZVMMF_2011_51_6_a4,
author = {R. V. Efremov and G. K. Kamenev},
title = {Optimal growth order of the number of vertices and facets in the class of {Hausdorff} methods for polyhedral approximation of convex bodies},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1018--1031},
year = {2011},
volume = {51},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_6_a4/}
}
TY - JOUR AU - R. V. Efremov AU - G. K. Kamenev TI - Optimal growth order of the number of vertices and facets in the class of Hausdorff methods for polyhedral approximation of convex bodies JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2011 SP - 1018 EP - 1031 VL - 51 IS - 6 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_6_a4/ LA - ru ID - ZVMMF_2011_51_6_a4 ER -
%0 Journal Article %A R. V. Efremov %A G. K. Kamenev %T Optimal growth order of the number of vertices and facets in the class of Hausdorff methods for polyhedral approximation of convex bodies %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2011 %P 1018-1031 %V 51 %N 6 %U http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_6_a4/ %G ru %F ZVMMF_2011_51_6_a4
R. V. Efremov; G. K. Kamenev. Optimal growth order of the number of vertices and facets in the class of Hausdorff methods for polyhedral approximation of convex bodies. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 6, pp. 1018-1031. http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_6_a4/
[1] Minkowskii H., “Volumen und Oberfläche”, Math. Ann., 57 (1903), 447–497 | DOI | MR
[2] Aleksandrov A. D., Vnutrennyaya geometriya vypuklykh poverkhnostei, Gostekhteorizdat, M.-L., 1948
[3] Gruber P. M., “Aspects of approximation of convex bodies”, Handbook of Convex Geometry, Ch. 1.10, v. B, Elsevier Sci., 1993, 321–345
[4] Bronshtein E. M., “Approksimatsiya vypuklykh mnozhestv mnogogrannikami”, Sovr. matem. Fundamentalnye napravleniya. Geometriya, 22, 2007, 5–37
[5] Böröczky K. Jr., “Polytopal approximation bounding the number of $k$-faces”, J. Approximat. Theory, 102 (2000), 263–285 | DOI | MR
[6] Böröczky K. J., Fodov F., Vigh V., “Approximating 3-dimensional convex bodies by polytopes with a restricted number of edges”, Beit. Alg. Geom., 49 (2008), 177–193 | MR
[7] Pontryagin L. S., Boltyanskii V. G., Gamkrelizde R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1969
[8] Sonnevend G., “An optimal sequential algorithm for the uniform approximation of convex functions on [0, 1]”, Appl. Math. and Optimizat., 10 (1983), 127–142 | DOI | MR | Zbl
[9] Moiseev N. N., Matematicheskie zadachi sistemnogo analiza, Nauka, M., 1981
[10] Lotov A. V., Bushenkov V. A., Kamenev G. K., Chernykh O. L., Kompyuter i poisk kompromissa. Metod dostizhimykh tselei, Nauka, M., 1997
[11] Lotov A. V., Bushenkov V. A., Kamenev G. K., Interactive decision maps: Approximation and visualization of pareto frontier, Appl. Optimizat., 89, Kluwer Acad. Publs, Boston etc., 2004 | MR | Zbl
[12] Bushenkov V. A., Lotov A. V., Metody postroeniya i ispolzovaniya obobschennykh mnozhestv dostizhimosti, VTs AN SSSR, M., 1982
[13] Kamenev G. K., “Ob odnom klasse adaptivnykh skhem approksimatsii vypuklykh tel mnogogrannikami”, Matem. modelirovanie i diskretnaya optimizatsiya, Izd. VTs AN SSSR, M., 1988, 3–9 | MR
[14] Kamenev G. K., “Ob odnom klasse adaptivnykh algoritmov approksimatsii vypuklykh tel mnogogrannikami”, Zh. vychisl. matem. i matem. fiz., 32:1 (1992), 136–152 | MR
[15] Kamenev G. K., “Ob effektivnosti khausdorfovykh algoritmov poliedralnoi approksimatsii vypuklykh tel”, Zh. vychisl. matem. i matem. fiz., 33:5 (1993), 796–805 | MR | Zbl
[16] Kamenev G. K., “Effektivnye algoritmy vnutrennei poliedralnoi approksimatsii negladkikh vypuklykh tel”, Zh. vychisl. matem. i matem. fiz., 39:3 (1999), 446–450 | MR | Zbl
[17] Kamenev G. K., “Ob approksimatsionnykh svoistvakh negladkikh vypuklykh diskov”, Zh. vychisl. matem. i matem. fiz., 40:10 (2000), 1464–1474 | MR | Zbl
[18] Efremov R. V., Kamenev G. K., “Apriornaya otsenka asimptoticheskoi effektivnosti odnogo klassa algoritmov poliedralnoi approksimatsii vypuklykh tel”, Zh. vychisl. matem. i matem. fiz., 42:1 (2002), 23–32 | MR | Zbl
[19] Dzholdybaeva S. M., Kamenev G. K., “Chislennoe issledovanie effektivnosti algoritma approksimatsii vypuklykh tel mnogogrannikami”, Zh. vychisl. matem. i matem. fiz., 32:6 (1992), 857–866 | MR | Zbl
[20] Kamenev G. K., Optimalnye adaptivnye metody poliedralnoi approksimatsii vypuklykh tel, VTs RAN, M., 2007
[21] Bronshtein E. M., Ivanov L. D., “O priblizhenii vypuklykh mnozhestv mnogogrannikami”, Sibirskii matem. zhurnal, 26:5 (1975), 1110–1112
[22] Dudley R., “Metric entropy of some classes of sets with differentiable boundaries”, J. Approximat. Theory, 10 (1974), 227–236 ; Corr. J. Approximat. Theory, 26 (1979), 192–193 | DOI | MR | Zbl | DOI | MR | Zbl
[23] Gruber P. M., “Asymptotic estimates for best and stepwise approximation of convex bodies. I”, Forum Math., 5 (1993), 281–297 | DOI | MR | Zbl
[24] Rodzhers K., Ukladki i pokrytiya, Mir, M., 1968
[25] Konvei Dzh., Sloen N., Upakovki sharov, reshetki i gruppy, v. 1, Mir, M., 1990
[26] Böröczky K. Jr., “About the error term for best approximation with respect to the Hausdorff related metrics”, Discrete Comput. Geometrie, 25 (2001), 293–309 | DOI | MR
[27] Brensted A., Vvedenie v teoriyu vypuklykh mnogogrannikov, Mir, M., 1988
[28] McMullen P., Shephard G. C., Convex polytopes and the upper bound conjecture, Cambridge Univ. Press, Cambridge, 1971
[29] Efremov R. V., Kamenev G. K., “Properties of a method for polyhedral approximation of the feasible criterion set in convex multiobjective problems”, Ann. Operat. Res., 166 (2009), 271–279 | DOI | MR | Zbl
[30] Blyashke V., Krug i shar, Nauka, M., 1967
[31] Koutroufiotis D., “On Blaschke's rolling theorems”, Arch. Math., 23 (1972), 655–660 | DOI | MR | Zbl
[32] Schneider R., “Closed convex hypersurfaces with curvature restrictions”, Proc. Amer. Math. Soc., 103 (1988), 1201–1204 | DOI | MR | Zbl
[33] Leichtweiß K., “Convexity and differential geometry”, Handbook of Convex Geometry, Ch. 4.1, v. B, Elsevier Sci., 1993, 1045–1080