An algorithm for dynamic reconstruction of input disturbances from observations of some of the coordinates
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 6, pp. 1007-1017 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The dynamic reconstruction of input disturbances and unobserved state coordinates is considered. An algorithm based on the dynamic inversion theory is proposed, which is robust to observational and computational errors.
@article{ZVMMF_2011_51_6_a3,
     author = {M. S. Blizorukova and V. I. Maksimov},
     title = {An algorithm for dynamic reconstruction of input disturbances from observations of some of the coordinates},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1007--1017},
     year = {2011},
     volume = {51},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_6_a3/}
}
TY  - JOUR
AU  - M. S. Blizorukova
AU  - V. I. Maksimov
TI  - An algorithm for dynamic reconstruction of input disturbances from observations of some of the coordinates
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2011
SP  - 1007
EP  - 1017
VL  - 51
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_6_a3/
LA  - ru
ID  - ZVMMF_2011_51_6_a3
ER  - 
%0 Journal Article
%A M. S. Blizorukova
%A V. I. Maksimov
%T An algorithm for dynamic reconstruction of input disturbances from observations of some of the coordinates
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2011
%P 1007-1017
%V 51
%N 6
%U http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_6_a3/
%G ru
%F ZVMMF_2011_51_6_a3
M. S. Blizorukova; V. I. Maksimov. An algorithm for dynamic reconstruction of input disturbances from observations of some of the coordinates. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 6, pp. 1007-1017. http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_6_a3/

[1] Kryazhimskii A. V., Osipov Yu. S., “O modelirovanii upravleniya v dinamicheskoi sisteme”, Izv. AN SSSR. Tekhn. kibernetika, 1983, no. 2, 51–60 | MR

[2] Osipov Yu. S., Kryazhimskii A. V., Inverse problems for ordinary differential equations: dynamical solutions, Gordon and Breach, Basel, 1995 | Zbl

[3] Osipov Yu. S., Vasilev F. P., Potapov M. M., Osnovy metoda dinamicheskoi regulyarizatsii, Izd-vo MGU, M., 1999

[4] Osipov Yu. S., Kryazhimskii A. V., Maksimov V. I., Zadachi dinamicheskoi regulyarizatsii dlya sistem s raspredelennymi parametrami, In-t matem. i mekhan. UrO RAN, Sverdlovsk, 1991

[5] Osipov Yu. S., Kryazhimskii A. V., Maksimov V. I., “Obratnye zadachi dinamiki dlya parabolicheskikh sistem”, Differents. ur-niya, 36:5 (2000), 579–597 | MR | Zbl

[6] Maksimov V. I., Zadachi dinamicheskogo vosstanovleniya vkhodov beskonechnomernykh sistem, In-t matem. i mekhan. UrO RAN, Ekaterinburg, 2000

[7] Osipov Yu. S., Kryazhimskii A. V., Maksimov V. I., “Metod ekstremalnogo sdviga N. N. Krasovskogo i zadachi granichnogo upravleniya”, Avtomatika i telemekhan., 2009, no. 4, 18–30 | MR | Zbl

[8] Kryazhimskii A. V., Osipov Yu. S., “Ob ustoichivom pozitsionnom vosstanovlenii upravleniya po izmereniyam chasti koordinat”, Nekotorye zadachi upravleniya i ustoichivosti, Sverdlovsk, 1989, 33–47 | MR

[9] Kryazhimskii A. V., Osipov Yu. S., “O metodakh pozitsionnogo modelirovaniya upravleniya v dinamicheskikh sistemakh”, Kachestvennye vopr. teorii differents. ur-nii i upravlyaemykh sistem, Sverdlovsk, 1988, 34–44 | MR