@article{ZVMMF_2011_51_6_a2,
author = {A. F. Izmailov and A. L. Pogosyan},
title = {A~semismooth sequential quadratic programming method for lifted mathematical programs with vanishing constraints},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {983--1006},
year = {2011},
volume = {51},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_6_a2/}
}
TY - JOUR AU - A. F. Izmailov AU - A. L. Pogosyan TI - A semismooth sequential quadratic programming method for lifted mathematical programs with vanishing constraints JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2011 SP - 983 EP - 1006 VL - 51 IS - 6 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_6_a2/ LA - ru ID - ZVMMF_2011_51_6_a2 ER -
%0 Journal Article %A A. F. Izmailov %A A. L. Pogosyan %T A semismooth sequential quadratic programming method for lifted mathematical programs with vanishing constraints %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2011 %P 983-1006 %V 51 %N 6 %U http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_6_a2/ %G ru %F ZVMMF_2011_51_6_a2
A. F. Izmailov; A. L. Pogosyan. A semismooth sequential quadratic programming method for lifted mathematical programs with vanishing constraints. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 6, pp. 983-1006. http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_6_a2/
[1] Achtziger W., Kanzow C., “Mathematical programs with vanishing constraints: optimality conditions and constraint qualifications”, Math. Program., 114:1 (2007), 69–99 | DOI | MR
[2] Achtziger W., Hoheisel T., Kanzow C., A smoothing-regularization approach to mathematical programs with vanishing constraints, Preprint 284, Inst. Math. Univ. Würzburg, Würzburg, 2008
[3] Hoheisel T., Kanzow C., “First- and second-order optimality conditions for mathematical programs with vanishing constraints”, Appl. Math., 52 (2007), 495–514 | DOI | MR | Zbl
[4] Hoheisel T., Kanzow C., “Stationarity conditions for mathematical programs with vanishing constraints using weak constraint qualifications”, J. Math. Analys. Appl., 337 (2008), 292–310 | DOI | MR | Zbl
[5] Hoheisel T., Kanzow C., “On the Abadie and Guignard constraint qualifications for mathematical programs with vanishing constraints”, Optimizat., 58:4 (2009), 431–448 | DOI | MR | Zbl
[6] Izmailov A. F., Solodov M. V., “Mathematical programs with vanishing constraints: optimality conditions, sensitivity, and a relaxation method”, J. Optimizat. Theory Appl., 142:3 (2009), 501–532 | DOI | MR | Zbl
[7] Izmailov A. F., Pogosyan A. L., “Usloviya optimalnosti i nyutonovskie metody dlya zadach optimizatsii s ischezayuschimi ogranicheniyami”, Zh. vychisl. matem. i matem. fiz., 49:7 (2009), 1184–1196 | MR | Zbl
[8] Izmailov A. F., Pogosyan A. L., “O metodakh aktivnogo mnozhestva dlya zadach optimizatsii s ischezayuschimi ogranicheniyami”, Teor. i prikl. zadachi nelineinogo analiza, VTs RAN, M., 2009, 18–49
[9] Hoheisel T., Kanzow C., Schwartz A., “Convergence of a local regularization approach for mathematical programs with complementarity or vanishing constraints”, Optimizat. Meth. Software, 2011 | DOI | Zbl
[10] Luo Z.-Q., Pang J.-S., Ralph D., Mathematical programs with equilibrium constraints, Cambridge Univ. Press, Cambridge, 1996
[11] Outrata J. V., Kocvara M., Zowe J., “Nonsmooth approach to optimization problems with equilibrium constraints”, Theory, applications and numerical results, Kluwer Acad. Publs, Boston, 1998 | Zbl
[12] Izmailov A. F., “Zadachi optimizatsii s komplementarnymi ogranicheniyami: regulyarnost, usloviya optimalnosti i chuvstvitelnost”, Zh. vychisl. matem. i matem. fiz., 44:7 (2004), 1209–1228 | MR | Zbl
[13] Izmailov A. F., Chuvstvitelnost v optimizatsii, Fizmatlit, M., 2006
[14] Stein O., “Lifting mathematical programs with complementarity constraints”, Math. Program., 2010 | DOI
[15] Izmailov A. F., Pogosyan A. L., Solodov M. V., “Semismooth Newton method for the lifted reformulation of mathematical programs with complementarity constraints”, Comput. Optimizat. Appl., 2010 | DOI | MR
[16] Izmailov A. F., Solodov M. V., Chislennye metody optimizatsii, Izd. 2-e, pererab. i dop., Fizmatlit, M., 2008
[17] Qi L., “Superlinearly convergent approximate Newton methods for LC${}^1$ optimization problems”, Math. Program., 64 (1994), 277–294 | DOI | Zbl
[18] Han J., Sun D., “Superlinear convergence of approximate Newton methods for LC${}^1$ optimization problems without strict complementarity”, Recent Advances in Nonsmooth Optimization, 58, World Scient. Publs Co., Singapur, 1993, 353–367
[19] Izmailov A. F., Pogosyan A. L., Solodov M. V., Semismooth SQP method for equality-constrained optimization problems with an application to the lifted reformulation of mathematical programs with complementrarity constraints, Preprint A 675/2010/IMPA, Rio de Janeiro, 2010 Available at http://www.preprint.impa.br:80/Shadows/SERIE A/2010/675.html
[20] Bonnans J. F., “Local analysis of Newton-type methods for variational inequalities and nonlinear programming”, Appl. Math. Optimizat., 29 (1994), 161–186 | DOI | MR | Zbl
[21] Nocedal J., Wright S. J., Numerical optimization, Sec. ed., Springer, New York, 2006
[22] Fernández D., Izmailov A. F., Solodov M. V., “Sharp primal superlinear convergence results for some Newtonian methods for constrained optimization”, SIAM J. Optimizat., 20:6 (2010), 3312–3334 | DOI | Zbl
[23] Tseng P., “Growth behavior of a class of merit functions for the nonlinear complementarity problem”, J. Optimizat. Theory Appl., 89:1 (1996), 17–37 | DOI | MR | Zbl
[24] Bonnans J. F., Gilbert J. Ch., Lemaréchal C., Sagastizábal C., Numerical optimization: theoretical and practical aspects, Sec. ed., Springer, Berlin, 2006
[25] Dolan E., Moré J., “Benchmarking optimization software with performance profiles”, Math. Program., 91:2 (2002), 201–213 | DOI | MR | Zbl
[26] Darina A. N., Izmailov A. F., “Polugladkii metod Nyutona dlya zadachi kvadratichnogo programmirovaniya s prostymi ogranicheniyami”, Zh. vychisl. matem. i matem. fiz., 9:10 (2009), 1785–1795