Gradient stability of numerical algorithms in local nonequilibrium problems of critical dynamics
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 6, pp. 1148-1165

Voir la notice de l'article provenant de la source Math-Net.Ru

The critical dynamics of a spatially inhomogeneous system are analyzed with allowance for local nonequilibrium, which leads to a singular perturbation in the equations due to the appearance of a second time derivative. An extension is derived for the Eyre theorem, which holds for classical critical dynamics described by first-order equations in time and based on the local equilibrium hypothesis. It is shown that gradient-stable numerical algorithms can also be constructed for second-order equations in time by applying the decomposition of the free energy into expansive and contractive parts, which was suggested by Eyre for classical equations. These gradient-stable algorithms yield a monotonically nondecreasing free energy in simulations with an arbitrary time step. It is shown that the gradient stability conditions for the modified and classical equations of critical dynamics coincide in the case of a certain time approximation of the inertial dynamics relations introduced for describing local nonequilibrium. Model problems illustrating the extended Eyre theorem for critical dynamics problems are considered.
@article{ZVMMF_2011_51_6_a13,
     author = {P. K. Galenko and V. G. Lebedev and A. A. Sysoeva},
     title = {Gradient stability of numerical algorithms in local nonequilibrium problems of critical dynamics},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1148--1165},
     publisher = {mathdoc},
     volume = {51},
     number = {6},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_6_a13/}
}
TY  - JOUR
AU  - P. K. Galenko
AU  - V. G. Lebedev
AU  - A. A. Sysoeva
TI  - Gradient stability of numerical algorithms in local nonequilibrium problems of critical dynamics
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2011
SP  - 1148
EP  - 1165
VL  - 51
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_6_a13/
LA  - ru
ID  - ZVMMF_2011_51_6_a13
ER  - 
%0 Journal Article
%A P. K. Galenko
%A V. G. Lebedev
%A A. A. Sysoeva
%T Gradient stability of numerical algorithms in local nonequilibrium problems of critical dynamics
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2011
%P 1148-1165
%V 51
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_6_a13/
%G ru
%F ZVMMF_2011_51_6_a13
P. K. Galenko; V. G. Lebedev; A. A. Sysoeva. Gradient stability of numerical algorithms in local nonequilibrium problems of critical dynamics. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 6, pp. 1148-1165. http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_6_a13/