@article{ZVMMF_2011_51_6_a13,
author = {P. K. Galenko and V. G. Lebedev and A. A. Sysoeva},
title = {Gradient stability of numerical algorithms in local nonequilibrium problems of critical dynamics},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1148--1165},
year = {2011},
volume = {51},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_6_a13/}
}
TY - JOUR AU - P. K. Galenko AU - V. G. Lebedev AU - A. A. Sysoeva TI - Gradient stability of numerical algorithms in local nonequilibrium problems of critical dynamics JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2011 SP - 1148 EP - 1165 VL - 51 IS - 6 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_6_a13/ LA - ru ID - ZVMMF_2011_51_6_a13 ER -
%0 Journal Article %A P. K. Galenko %A V. G. Lebedev %A A. A. Sysoeva %T Gradient stability of numerical algorithms in local nonequilibrium problems of critical dynamics %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2011 %P 1148-1165 %V 51 %N 6 %U http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_6_a13/ %G ru %F ZVMMF_2011_51_6_a13
P. K. Galenko; V. G. Lebedev; A. A. Sysoeva. Gradient stability of numerical algorithms in local nonequilibrium problems of critical dynamics. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 6, pp. 1148-1165. http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_6_a13/
[1] Halperin B. I., Hohenberg P. C., Ma S.-K., “Renormalization-group methods for critical dynamics: I. Recursion relations and effects of energy conservation”, Phys. Rev., 10 (1974), 139–153 | DOI
[2] Bray A. J., “Theory of phase ordering kinetics”, Adv. Phys., 43 (1994), 357–459 | DOI | MR
[3] Allen S. M., Cahn J. W., “A macroscopic theory for antiphase boundary motion and its application to antiphase domain coarsening”, Acta Metall., 27 (1979), 1085–1095 | DOI
[4] Cahn J. W., Hilliard J. E., “Free energy of a nonuniform system. I. Interfacial free energy”, J. Chem. Phys., 28:2 (1958), 258–267 | DOI
[5] Swift J., Hohenberg P. C., “Hydrodynamic fluctuations at convective instability”, Phys. Rev. A, 15 (1977), 319–328 | DOI
[6] Elder K. R., Grant M., “Modeling elastic and plastic deformations in nonequilibrium processing using phase field crystals”, Phys. Rev. E, 70 (2004), 051605 | DOI
[7] Gunton J. D., Toral R., Chakrabarti A., “Numerical studies of phase separation”, Phys. Scripta, 33 (1990), 12–19 | DOI
[8] Vladimirova N., Malagoli A., Mauri R., “Diffusion-driven phase separation of deeply quenched mixtures”, Phys. Rev. E, 58 (1998), 7691 | DOI
[9] Wise S., Kim J., Lowengrub J., “Solving the regularized, strongly anisotropic Cahn–Hilliard equation by an adaptive nonlinear multigrid method”, Comput. Phys., 226 (2007), 414–446 | DOI | MR | Zbl
[10] Singer-Loginova I., Singer H. M., “The phase field technique for modeling multiphase materials”, Rept. Progress. Phys., 71 (2008), 106501 | DOI
[11] Emmerich H., “Advances of and by phase-field modeling in condensed-matter physics”, Advances Phys., 57:1 (2008), 1–87 | DOI
[12] Rogers T. M., Elder K. R., Desai R. C., “Numerical study of the late stages of spinodal decomposition”, Phys. Rev. B, 37 (1988), 9638 | DOI
[13] Eyre D. J., An unconditionally stable one-step scheme for gradient systems Preprint http://www.math.utah.edu/~eyre/research/methods/stable.ps
[14] Eyre D. J., “Unconditionally gradient stable time step marching the Cahn–Hilliard equation”, Comput. and Math. Models of Microstructural Evolution, Materials Res., Warrendale, PA, 1998, 39–46 | MR
[15] Vollmayer-Lee B. P., Rutenberg A. D., “Fast and accurate coarsening simulation with an unconditionally stable time step”, Phys. Rev. E, 68 (2003), 66703 | DOI
[16] Cheng M., Warren J. A., “Controlling the accuracy of unconditionally stable algorithms in the Cahn–Hilliard equation”, Phys. Rev. E, 75 (2007), 017702 | DOI
[17] Cheng M., Warren J. A., “An efficient algorithm for solving the phase field crystal model”, J. Comput. Phys., 227 (2008), 6241–6248 | DOI | MR | Zbl
[18] Jou D., Casas-Vazquez J., Lebon G., Extended irreversible thermodynamics, 4th ed., Springer, Berlin, 2010; Zhou D., Kazas-Baskes Kh., Lebon G., Rasshirennaya neobratimaya termodinamika, RKhD, Moskva-Izhevsk, 2006
[19] Herlach D., Galenko P., Holland-Moritz D., Metastable solids from undercooled Melts, Elsevier, Amsterdam, 2007; Kherlakh D., Galenko P., Kholland-Morits D., Metastabilnye materialy iz pereokhlazhdennykh rasplavov, RKhD, Moskva-Izhevsk, 2010
[20] Galenko P., “Phase-field model with relaxation of the diffusion flux in nonequilibrium solidification of a binary system”, Phys. Letts. A, 287:3–4 (2001), 190–197 | DOI
[21] Galenko P., Jou D., “Diffuse-interface model for rapid phase transformations in nonequilibrium systems”, Phys. Rev. E, 71 (2005), 046125 | DOI
[22] Galenko P., Lebedev V., “Analysis of the dispersion relation in spinodal decomposition of a binary system”, Philos. Mag. Letts, 87:11 (2007), 821–827 | DOI
[23] Galenko P., Danilov D., Lebedev V., “Phase-field-crystal and Swift–Hohenberg equations with fast dynamics”, Phys. Rev. E, 79 (2009), 051110 | DOI | MR
[24] Lecoq N., Zapolsky H., Galenko P., “Evolution of the structure factor in a hyperbolic model of spinodal decomposition”, Eur. Phys. J. Special Topics, 117 (2009), 165–175 | DOI
[25] Galenko P., “Solute trapping and diffusionless solidification in a binary system”, Phys. Rev. E, 76 (2007), 031606 | DOI
[26] Lebedev V. G., Abramova E. V., Danilov D. A., Galenko P. K., “Phase-field modeling of solute trapping: comparative analysis of parabolic and hyperbolic models”, Internat. J. Math Res., 101:4 (2010), 473–479
[27] Asta M., Harith H., Yang Y., Deyan S. et al., “Molecular dynamics simulations of solute trapping and solute drag”, Book abstr. Conf. PTM-2010 (Avignon, France, 2010), 29
[28] Landau L. D., “Rasseyanie rentgenovskikh luchei kristallami vblizi tochki Kyuri”, Zh. eksperim. i teor. fiz., 7 (1937), 1232
[29] Ginzburg V. L., Landau L. D., “K teorii sverkhprovodimosti”, Zh. eksper. i teor. fiz., 20 (1950), 1064
[30] Brazovskii S. A., “Fazovyi perekhod izotropnoi sistemy v neodnorodnoe sostoyanie”, Zh. eksperim. i teor. fiz., 68 (1975), 175–185
[31] Galenko P., Jou D., “Kinetic contribution to the fast spinodal decomposition controlled by diffusion”, Physica A, 388 (2009), 3113–3123 | DOI | MR
[32] Mors F. M., Feshbakh G., Metody teoreticheskoi fiziki, v. 1, Izd-vo inostr. lit., M., 1960