Gradient stability of numerical algorithms in local nonequilibrium problems of critical dynamics
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 6, pp. 1148-1165
Voir la notice de l'article provenant de la source Math-Net.Ru
The critical dynamics of a spatially inhomogeneous system are analyzed with allowance for local nonequilibrium, which leads to a singular perturbation in the equations due to the appearance of a second time derivative. An extension is derived for the Eyre theorem, which holds for classical critical dynamics described by first-order equations in time and based on the local equilibrium hypothesis. It is shown that gradient-stable numerical algorithms can also be constructed for second-order equations in time by applying the decomposition of the free energy into expansive and contractive parts, which was suggested by Eyre for classical equations. These gradient-stable algorithms yield a monotonically nondecreasing free energy in simulations with an arbitrary time step. It is shown that the gradient stability conditions for the modified and classical equations of critical dynamics coincide in the case of a certain time approximation of the inertial dynamics relations introduced for describing local nonequilibrium. Model problems illustrating the extended Eyre theorem for critical dynamics problems are considered.
@article{ZVMMF_2011_51_6_a13,
author = {P. K. Galenko and V. G. Lebedev and A. A. Sysoeva},
title = {Gradient stability of numerical algorithms in local nonequilibrium problems of critical dynamics},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1148--1165},
publisher = {mathdoc},
volume = {51},
number = {6},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_6_a13/}
}
TY - JOUR AU - P. K. Galenko AU - V. G. Lebedev AU - A. A. Sysoeva TI - Gradient stability of numerical algorithms in local nonequilibrium problems of critical dynamics JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2011 SP - 1148 EP - 1165 VL - 51 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_6_a13/ LA - ru ID - ZVMMF_2011_51_6_a13 ER -
%0 Journal Article %A P. K. Galenko %A V. G. Lebedev %A A. A. Sysoeva %T Gradient stability of numerical algorithms in local nonequilibrium problems of critical dynamics %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2011 %P 1148-1165 %V 51 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_6_a13/ %G ru %F ZVMMF_2011_51_6_a13
P. K. Galenko; V. G. Lebedev; A. A. Sysoeva. Gradient stability of numerical algorithms in local nonequilibrium problems of critical dynamics. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 6, pp. 1148-1165. http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_6_a13/