Gradient stability of numerical algorithms in local nonequilibrium problems of critical dynamics
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 6, pp. 1148-1165 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The critical dynamics of a spatially inhomogeneous system are analyzed with allowance for local nonequilibrium, which leads to a singular perturbation in the equations due to the appearance of a second time derivative. An extension is derived for the Eyre theorem, which holds for classical critical dynamics described by first-order equations in time and based on the local equilibrium hypothesis. It is shown that gradient-stable numerical algorithms can also be constructed for second-order equations in time by applying the decomposition of the free energy into expansive and contractive parts, which was suggested by Eyre for classical equations. These gradient-stable algorithms yield a monotonically nondecreasing free energy in simulations with an arbitrary time step. It is shown that the gradient stability conditions for the modified and classical equations of critical dynamics coincide in the case of a certain time approximation of the inertial dynamics relations introduced for describing local nonequilibrium. Model problems illustrating the extended Eyre theorem for critical dynamics problems are considered.
@article{ZVMMF_2011_51_6_a13,
     author = {P. K. Galenko and V. G. Lebedev and A. A. Sysoeva},
     title = {Gradient stability of numerical algorithms in local nonequilibrium problems of critical dynamics},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1148--1165},
     year = {2011},
     volume = {51},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_6_a13/}
}
TY  - JOUR
AU  - P. K. Galenko
AU  - V. G. Lebedev
AU  - A. A. Sysoeva
TI  - Gradient stability of numerical algorithms in local nonequilibrium problems of critical dynamics
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2011
SP  - 1148
EP  - 1165
VL  - 51
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_6_a13/
LA  - ru
ID  - ZVMMF_2011_51_6_a13
ER  - 
%0 Journal Article
%A P. K. Galenko
%A V. G. Lebedev
%A A. A. Sysoeva
%T Gradient stability of numerical algorithms in local nonequilibrium problems of critical dynamics
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2011
%P 1148-1165
%V 51
%N 6
%U http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_6_a13/
%G ru
%F ZVMMF_2011_51_6_a13
P. K. Galenko; V. G. Lebedev; A. A. Sysoeva. Gradient stability of numerical algorithms in local nonequilibrium problems of critical dynamics. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 6, pp. 1148-1165. http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_6_a13/

[1] Halperin B. I., Hohenberg P. C., Ma S.-K., “Renormalization-group methods for critical dynamics: I. Recursion relations and effects of energy conservation”, Phys. Rev., 10 (1974), 139–153 | DOI

[2] Bray A. J., “Theory of phase ordering kinetics”, Adv. Phys., 43 (1994), 357–459 | DOI | MR

[3] Allen S. M., Cahn J. W., “A macroscopic theory for antiphase boundary motion and its application to antiphase domain coarsening”, Acta Metall., 27 (1979), 1085–1095 | DOI

[4] Cahn J. W., Hilliard J. E., “Free energy of a nonuniform system. I. Interfacial free energy”, J. Chem. Phys., 28:2 (1958), 258–267 | DOI

[5] Swift J., Hohenberg P. C., “Hydrodynamic fluctuations at convective instability”, Phys. Rev. A, 15 (1977), 319–328 | DOI

[6] Elder K. R., Grant M., “Modeling elastic and plastic deformations in nonequilibrium processing using phase field crystals”, Phys. Rev. E, 70 (2004), 051605 | DOI

[7] Gunton J. D., Toral R., Chakrabarti A., “Numerical studies of phase separation”, Phys. Scripta, 33 (1990), 12–19 | DOI

[8] Vladimirova N., Malagoli A., Mauri R., “Diffusion-driven phase separation of deeply quenched mixtures”, Phys. Rev. E, 58 (1998), 7691 | DOI

[9] Wise S., Kim J., Lowengrub J., “Solving the regularized, strongly anisotropic Cahn–Hilliard equation by an adaptive nonlinear multigrid method”, Comput. Phys., 226 (2007), 414–446 | DOI | MR | Zbl

[10] Singer-Loginova I., Singer H. M., “The phase field technique for modeling multiphase materials”, Rept. Progress. Phys., 71 (2008), 106501 | DOI

[11] Emmerich H., “Advances of and by phase-field modeling in condensed-matter physics”, Advances Phys., 57:1 (2008), 1–87 | DOI

[12] Rogers T. M., Elder K. R., Desai R. C., “Numerical study of the late stages of spinodal decomposition”, Phys. Rev. B, 37 (1988), 9638 | DOI

[13] Eyre D. J., An unconditionally stable one-step scheme for gradient systems Preprint http://www.math.utah.edu/~eyre/research/methods/stable.ps

[14] Eyre D. J., “Unconditionally gradient stable time step marching the Cahn–Hilliard equation”, Comput. and Math. Models of Microstructural Evolution, Materials Res., Warrendale, PA, 1998, 39–46 | MR

[15] Vollmayer-Lee B. P., Rutenberg A. D., “Fast and accurate coarsening simulation with an unconditionally stable time step”, Phys. Rev. E, 68 (2003), 66703 | DOI

[16] Cheng M., Warren J. A., “Controlling the accuracy of unconditionally stable algorithms in the Cahn–Hilliard equation”, Phys. Rev. E, 75 (2007), 017702 | DOI

[17] Cheng M., Warren J. A., “An efficient algorithm for solving the phase field crystal model”, J. Comput. Phys., 227 (2008), 6241–6248 | DOI | MR | Zbl

[18] Jou D., Casas-Vazquez J., Lebon G., Extended irreversible thermodynamics, 4th ed., Springer, Berlin, 2010; Zhou D., Kazas-Baskes Kh., Lebon G., Rasshirennaya neobratimaya termodinamika, RKhD, Moskva-Izhevsk, 2006

[19] Herlach D., Galenko P., Holland-Moritz D., Metastable solids from undercooled Melts, Elsevier, Amsterdam, 2007; Kherlakh D., Galenko P., Kholland-Morits D., Metastabilnye materialy iz pereokhlazhdennykh rasplavov, RKhD, Moskva-Izhevsk, 2010

[20] Galenko P., “Phase-field model with relaxation of the diffusion flux in nonequilibrium solidification of a binary system”, Phys. Letts. A, 287:3–4 (2001), 190–197 | DOI

[21] Galenko P., Jou D., “Diffuse-interface model for rapid phase transformations in nonequilibrium systems”, Phys. Rev. E, 71 (2005), 046125 | DOI

[22] Galenko P., Lebedev V., “Analysis of the dispersion relation in spinodal decomposition of a binary system”, Philos. Mag. Letts, 87:11 (2007), 821–827 | DOI

[23] Galenko P., Danilov D., Lebedev V., “Phase-field-crystal and Swift–Hohenberg equations with fast dynamics”, Phys. Rev. E, 79 (2009), 051110 | DOI | MR

[24] Lecoq N., Zapolsky H., Galenko P., “Evolution of the structure factor in a hyperbolic model of spinodal decomposition”, Eur. Phys. J. Special Topics, 117 (2009), 165–175 | DOI

[25] Galenko P., “Solute trapping and diffusionless solidification in a binary system”, Phys. Rev. E, 76 (2007), 031606 | DOI

[26] Lebedev V. G., Abramova E. V., Danilov D. A., Galenko P. K., “Phase-field modeling of solute trapping: comparative analysis of parabolic and hyperbolic models”, Internat. J. Math Res., 101:4 (2010), 473–479

[27] Asta M., Harith H., Yang Y., Deyan S. et al., “Molecular dynamics simulations of solute trapping and solute drag”, Book abstr. Conf. PTM-2010 (Avignon, France, 2010), 29

[28] Landau L. D., “Rasseyanie rentgenovskikh luchei kristallami vblizi tochki Kyuri”, Zh. eksperim. i teor. fiz., 7 (1937), 1232

[29] Ginzburg V. L., Landau L. D., “K teorii sverkhprovodimosti”, Zh. eksper. i teor. fiz., 20 (1950), 1064

[30] Brazovskii S. A., “Fazovyi perekhod izotropnoi sistemy v neodnorodnoe sostoyanie”, Zh. eksperim. i teor. fiz., 68 (1975), 175–185

[31] Galenko P., Jou D., “Kinetic contribution to the fast spinodal decomposition controlled by diffusion”, Physica A, 388 (2009), 3113–3123 | DOI | MR

[32] Mors F. M., Feshbakh G., Metody teoreticheskoi fiziki, v. 1, Izd-vo inostr. lit., M., 1960