A vortex method for computing two-dimensional inviscid incompressible flows
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 6, pp. 1133-1147 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A vortex method is suggested for computing two-dimensional inviscid incompressible flows in a closed domain with a possible flow through it. An algorithm for searching for stable steady vortex configurations is described. The method developed is used to study the dynamics of the Chaplygin–Lamb dipole in a rectangular channel in various flow regimes.
@article{ZVMMF_2011_51_6_a12,
     author = {V. N. Govorukhin},
     title = {A vortex method for computing two-dimensional inviscid incompressible flows},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1133--1147},
     year = {2011},
     volume = {51},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_6_a12/}
}
TY  - JOUR
AU  - V. N. Govorukhin
TI  - A vortex method for computing two-dimensional inviscid incompressible flows
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2011
SP  - 1133
EP  - 1147
VL  - 51
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_6_a12/
LA  - ru
ID  - ZVMMF_2011_51_6_a12
ER  - 
%0 Journal Article
%A V. N. Govorukhin
%T A vortex method for computing two-dimensional inviscid incompressible flows
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2011
%P 1133-1147
%V 51
%N 6
%U http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_6_a12/
%G ru
%F ZVMMF_2011_51_6_a12
V. N. Govorukhin. A vortex method for computing two-dimensional inviscid incompressible flows. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 6, pp. 1133-1147. http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_6_a12/

[1] Belotserkovskii S. M., Ginevskiii A. S., Modelirovanie turbulentnykh strui i sledov na osnove metoda diskretnykh vikhrei, Fizmatlit, M., 1995

[2] Cottet G.-H., Koumoutsakos P. D., Vortex methods: Theory and practice, Cambridge Univ. Press, 1999 | Zbl

[3] Grigorev Yu. N., Vshivkov V. A., Chislennye metody “chastitsy-v-yacheikakh”, Nauka, Novosibirsk, 2000

[4] Hald O., “Convergence of vortex methods. II”, SIAM J. Numer. Analys., 16 (1979), 726–755 | DOI | MR | Zbl

[5] Beale J. T., Majda A., “Vortex methods. II: Higher order accuracy in two and three dimensions”, Math. Comput., 39 (1982), 29–52 | MR | Zbl

[6] Anderson C., Greengard C., “On vortex methods”, SIAM J. Numer. Analys., 22:3 (1985), 413–440 | DOI | MR | Zbl

[7] Koumoutsakos P., “Inviscid axisymmetrization of and elliptical vortex”, J. Comput. Phys., 138:2 (1997), 821–857 | DOI | MR | Zbl

[8] Strain J., “2D vortex methods and singular quadrature rules”, J. Comput. Phys., 124:1 (1996), 131–145 | DOI | MR | Zbl

[9] Lamb G., Gidrodinamika, Gostekhteorizdat, M.-L., 1947

[10] Chaplygin S. A., “Odin sluchai vikhrevogo dvizheniya zhidkosti”, Tr. otd. fiz. nauk Imperatorskogo Mosk. ob-va lyubitelei estestvoznaniya, 11:2 (1903), 11–14

[11] Couder Y., Basdevant C., “Experemental and numerical study of vortex couples in two dimensional flows”, J. Fluid Mech., 173 (1983), 225–251 | DOI

[12] van Heijst G. J. F., Flor J. B., “Dipole formations and collisions in a stratified flow”, Nature (London), 340 (1989), 212–215 | DOI

[13] Velasco F. O. U., van Heijst G. J. F., “Experimental study of dipolar vortices on a topographic beta-plane”, J. Fluid Mech., 259 (1994), 79–106 | DOI

[14] Pedloski Dzh., Geofizicheskaya gidrodinamika, v. 1, 2, Mir, M., 1984

[15] Kazhikhov A. V., “Zamechanie k postanovke zadachi protekaniya dlya uravnenii idealnoi zhidkosti”, Prikl. matem. i mekhan., 44:5 (1980), 947–949 | MR | Zbl

[16] Yudovich V. I., “Dvumernaya nestatsionarnaya zadacha o protekanii idealnoi neszhimaemoi zhidkosti cherez zadannuyu oblast”, Matem. sb., 64:4 (1964), 562–588

[17] Morgulis A., Yudovich V., “Arnold's method for asymptotic stability of steady inviscid incompressible flow through a fixed domain with permeable boundary”, Chaos, 12:2 (2002), 356–371 | DOI | MR | Zbl

[18] Govorukhin V. N., Morgulis A. B., Yudovich V. I., “Raschet dvumernykh rezhimov protekaniya idealnoi neszhimaemoi zhidkosti skvoz pryamougolnyi kanal”, Dokl. RAN, 412:4 (2006), 1–5

[19] Govorukhin V. N., Ilin K. I., “Numerical study of an inviscid incompressible fluid through a channel of finite length”, Internat. J. Numer. Methods Fluids, 60:12 (2009), 1315–1333 | DOI | MR | Zbl

[20] Ould-Salihi M. L., Cottet G.-H., El Hamraoui M., “Blending finite difference and vortex methods for incompressible flow computations”, SIAM J. Sci. Comput., 22:5 (2000), 1655–1674 | DOI | MR | Zbl

[21] Vera E. Ch., Rebollo T. Ch., “On cubic spline approximations for the vortex patch problem”, Appl. Numer. Math., 36 (2001), 359–387 | DOI | MR | Zbl

[22] Sanz-Serna J. M., Calvo M. P., Numerical Hamiltonian problems, Chapman and Hall, London, 1994

[23] Vosbeek P. W. C., Mattheij R. M. M., “Contour dynamics with symplectic time integration”, J. Comput. Phys., 133:2 (1997), 222–234 | DOI | MR | Zbl

[24] Aubry A., Chartier P., “Pseudo-symplectic Runge–Kutta methods”, BIT, 38:3 (1998), 439–461 | DOI | MR | Zbl

[25] Nielsen A. H., Rasmussen J., “Formation and temporal evolution of the Lamb-dipole”, Phys. Fluids, 9:4 (1997), 982–991 | DOI | MR | Zbl