@article{ZVMMF_2011_51_6_a12,
author = {V. N. Govorukhin},
title = {A vortex method for computing two-dimensional inviscid incompressible flows},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1133--1147},
year = {2011},
volume = {51},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_6_a12/}
}
TY - JOUR AU - V. N. Govorukhin TI - A vortex method for computing two-dimensional inviscid incompressible flows JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2011 SP - 1133 EP - 1147 VL - 51 IS - 6 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_6_a12/ LA - ru ID - ZVMMF_2011_51_6_a12 ER -
V. N. Govorukhin. A vortex method for computing two-dimensional inviscid incompressible flows. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 6, pp. 1133-1147. http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_6_a12/
[1] Belotserkovskii S. M., Ginevskiii A. S., Modelirovanie turbulentnykh strui i sledov na osnove metoda diskretnykh vikhrei, Fizmatlit, M., 1995
[2] Cottet G.-H., Koumoutsakos P. D., Vortex methods: Theory and practice, Cambridge Univ. Press, 1999 | Zbl
[3] Grigorev Yu. N., Vshivkov V. A., Chislennye metody “chastitsy-v-yacheikakh”, Nauka, Novosibirsk, 2000
[4] Hald O., “Convergence of vortex methods. II”, SIAM J. Numer. Analys., 16 (1979), 726–755 | DOI | MR | Zbl
[5] Beale J. T., Majda A., “Vortex methods. II: Higher order accuracy in two and three dimensions”, Math. Comput., 39 (1982), 29–52 | MR | Zbl
[6] Anderson C., Greengard C., “On vortex methods”, SIAM J. Numer. Analys., 22:3 (1985), 413–440 | DOI | MR | Zbl
[7] Koumoutsakos P., “Inviscid axisymmetrization of and elliptical vortex”, J. Comput. Phys., 138:2 (1997), 821–857 | DOI | MR | Zbl
[8] Strain J., “2D vortex methods and singular quadrature rules”, J. Comput. Phys., 124:1 (1996), 131–145 | DOI | MR | Zbl
[9] Lamb G., Gidrodinamika, Gostekhteorizdat, M.-L., 1947
[10] Chaplygin S. A., “Odin sluchai vikhrevogo dvizheniya zhidkosti”, Tr. otd. fiz. nauk Imperatorskogo Mosk. ob-va lyubitelei estestvoznaniya, 11:2 (1903), 11–14
[11] Couder Y., Basdevant C., “Experemental and numerical study of vortex couples in two dimensional flows”, J. Fluid Mech., 173 (1983), 225–251 | DOI
[12] van Heijst G. J. F., Flor J. B., “Dipole formations and collisions in a stratified flow”, Nature (London), 340 (1989), 212–215 | DOI
[13] Velasco F. O. U., van Heijst G. J. F., “Experimental study of dipolar vortices on a topographic beta-plane”, J. Fluid Mech., 259 (1994), 79–106 | DOI
[14] Pedloski Dzh., Geofizicheskaya gidrodinamika, v. 1, 2, Mir, M., 1984
[15] Kazhikhov A. V., “Zamechanie k postanovke zadachi protekaniya dlya uravnenii idealnoi zhidkosti”, Prikl. matem. i mekhan., 44:5 (1980), 947–949 | MR | Zbl
[16] Yudovich V. I., “Dvumernaya nestatsionarnaya zadacha o protekanii idealnoi neszhimaemoi zhidkosti cherez zadannuyu oblast”, Matem. sb., 64:4 (1964), 562–588
[17] Morgulis A., Yudovich V., “Arnold's method for asymptotic stability of steady inviscid incompressible flow through a fixed domain with permeable boundary”, Chaos, 12:2 (2002), 356–371 | DOI | MR | Zbl
[18] Govorukhin V. N., Morgulis A. B., Yudovich V. I., “Raschet dvumernykh rezhimov protekaniya idealnoi neszhimaemoi zhidkosti skvoz pryamougolnyi kanal”, Dokl. RAN, 412:4 (2006), 1–5
[19] Govorukhin V. N., Ilin K. I., “Numerical study of an inviscid incompressible fluid through a channel of finite length”, Internat. J. Numer. Methods Fluids, 60:12 (2009), 1315–1333 | DOI | MR | Zbl
[20] Ould-Salihi M. L., Cottet G.-H., El Hamraoui M., “Blending finite difference and vortex methods for incompressible flow computations”, SIAM J. Sci. Comput., 22:5 (2000), 1655–1674 | DOI | MR | Zbl
[21] Vera E. Ch., Rebollo T. Ch., “On cubic spline approximations for the vortex patch problem”, Appl. Numer. Math., 36 (2001), 359–387 | DOI | MR | Zbl
[22] Sanz-Serna J. M., Calvo M. P., Numerical Hamiltonian problems, Chapman and Hall, London, 1994
[23] Vosbeek P. W. C., Mattheij R. M. M., “Contour dynamics with symplectic time integration”, J. Comput. Phys., 133:2 (1997), 222–234 | DOI | MR | Zbl
[24] Aubry A., Chartier P., “Pseudo-symplectic Runge–Kutta methods”, BIT, 38:3 (1998), 439–461 | DOI | MR | Zbl
[25] Nielsen A. H., Rasmussen J., “Formation and temporal evolution of the Lamb-dipole”, Phys. Fluids, 9:4 (1997), 982–991 | DOI | MR | Zbl