Improved approximations of the solution and derivatives to a singularly perturbed reaction-diffusion equation based on the solution decomposition method
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 6, pp. 1091-1120 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the case of the Dirichlet problem for a singularly perturbed ordinary differential reaction–diffusion equation, a new approach is used to the construction of finite difference schemes such that their solutions and their normalized first- and second-order derivatives converge in the maximum norm uniformly with respect to a perturbation parameter $\varepsilon\in(0,1]$; the normalized derivatives are $\varepsilon$-uniformly bounded. The key idea of this approach to the construction of $\varepsilon$-uniformly convergent finite difference schemes is the use of uniform grids for solving grid subproblems for the regular and singular components of the grid solution. Based on the asymptotic construction technique, a scheme of the solution decomposition method is constructed such that its solution and its normalized first- and second-order derivatives converge $\varepsilon$-uniformly at the rate of $O(N^{-2}\ln^2N)$, where $N+1$ is the number of points in the uniform grids. Using the Richardson technique, an improved scheme of the solution decomposition method is constructed such that its solution and its normalized first and second derivatives converge $\varepsilon$-uniformly in the maximum norm at the same rate of $O(N^{-4}\ln^4N)$.
@article{ZVMMF_2011_51_6_a10,
     author = {G. I. Shishkin and L. P. Shishkina},
     title = {Improved approximations of the solution and derivatives to a singularly perturbed reaction-diffusion equation based on the solution decomposition method},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1091--1120},
     year = {2011},
     volume = {51},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_6_a10/}
}
TY  - JOUR
AU  - G. I. Shishkin
AU  - L. P. Shishkina
TI  - Improved approximations of the solution and derivatives to a singularly perturbed reaction-diffusion equation based on the solution decomposition method
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2011
SP  - 1091
EP  - 1120
VL  - 51
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_6_a10/
LA  - ru
ID  - ZVMMF_2011_51_6_a10
ER  - 
%0 Journal Article
%A G. I. Shishkin
%A L. P. Shishkina
%T Improved approximations of the solution and derivatives to a singularly perturbed reaction-diffusion equation based on the solution decomposition method
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2011
%P 1091-1120
%V 51
%N 6
%U http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_6_a10/
%G ru
%F ZVMMF_2011_51_6_a10
G. I. Shishkin; L. P. Shishkina. Improved approximations of the solution and derivatives to a singularly perturbed reaction-diffusion equation based on the solution decomposition method. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 6, pp. 1091-1120. http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_6_a10/

[1] Marchuk G. I., Shaidurov V. V., Povyshenie tochnosti reshenii raznostnykh skhem, Nauka, M., 1979

[2] Khemker P. V., Shishkin G. I., Shishkina L. P., “Dekompozitsiya metoda Richardsona vysokogo poryadka tochnosti dlya singulyarno vozmuschennogo ellipticheskogo uravneniya reaktsii-diffuzii”, Zh. vychisl. matem. i matem. fiz., 44:2 (2004), 328–336 | MR

[3] Shishkina L. P., “The Richardson method of high-order accuracy in t for a semilinear singularly perturbed parabolic reaction-diffusion equation on a strip”, Proc. Internat. Conf. Comput. Math. ICCM'2004, Part II (Novosibirsk, June 2004), ICM MC Publisher, Novosibirsk, 2004, 927–931

[4] Shishkin G. I., Shishkina L. P., “Metod Richardsona vysokogo poryadka tochnosti dlya kvazilineinogo singulyarno vozmuschennogo ellipticheskogo uravneniya reaktsii-diffuzii”, Differents. ur-niya, 41:7 (2005), 980–989 | MR | Zbl

[5] Shishkin G. I., “Robust novel high-order accurate numerical methods for singularly perturbed convection-diffusion problems”, Math. Modelling and Analys., 10:2 (2005), 393–412 | MR | Zbl

[6] Shishkin G. I., “Metod Richardsona povysheniya tochnosti reshenii singulyarno vozmuschennykh ellipticheskikh uravnenii s konvektsiei”, Izv. vuzov. Matematika, 2006, no. 2, 57–71 | MR | Zbl

[7] Shishkin G. I., “Skhema Richardsona dlya singulyarno vozmuschennogo parabolicheskogo uravneniya reaktsii-diffuzii s razryvnym nachalnym usloviem”, Zh. vychisl. matem. i matem. fiz., 49:8 (2009), 1416–1436 | MR | Zbl

[8] Shishkin G. I., Shishkina L. P., “Skhema Richardsona povyshennogo poryadka tochnosti dlya semilineinogo singulyarno vozmuschennogo ellipticheskogo uravneniya konvektsii-diffuzii”, Zh. vychisl. matem. i matem. fiz., 50:3 (2010), 458–478 | MR | Zbl

[9] Shishkin G. I., Shishkina L. P., Difference methods for singular perturbation problems, Ser. Monographs Surveys in Pure Appl Math., Chapman and Hall/CRC, 2009 | Zbl

[10] Shishkin G. I., Shishkina L. P., “Uluchshennaya raznostnaya skhema metoda dekompozitsii resheniya dlya singulyarno vozmuschennogo (obyknovennogo differentsialnogo) uravneniya reaktsii-diffuzii”, Tr. IMM UrO RAN, 16, no. 1, Ekaterinburg, 2010, 255–271 | MR

[11] Ilin A. M., “Raznostnaya skhema dlya differentsialnogo uravneniya s malym parametrom pri starshei proizvodnoi”, Matem. zametki, 6:2 (1969), 237–248

[12] Allen D. N., Southwell R. V., “Relaxation methods applied to determine the motion, in two dimensions, of viscous fluid past a fixed cylinder”, Quart. J. Mech. Appl. Math., 8:2 (1955), 129–145 | DOI | MR | Zbl

[13] Bakhvalov N. S., “K optimizatsii metodov resheniya kraevykh zadach pri nalichii pogranichnogo sloya”, Zh. vychisl. matem. i matem. fiz., 9:4 (1969), 841–859 | Zbl

[14] Miller J. J. H., O'Riordan E., “Necessity of fitted operators and Shishkin meshes for resolving thin layer phenomena”, CWI Quarterly, 10:3, 4 (1997), 207–213 | MR | Zbl

[15] Shishkin G. I., “Approksimatsiya reshenii singulyarno vozmuschennykh kraevykh zadach s parabolicheskim pogranichnym sloem”, Zh. vychisl. matem. i matem. fiz., 29:7 (1989), 963–977 | MR

[16] Shishkin G. I., “Difference scheme of the solution decomposition method for a singularly perturbed parabolic reaction-diffusion equation”, Rus. J. Numer. Analys. and Math. Modelling (RJNAMM), 25:3 (2010), 261–278 | DOI | MR | Zbl

[17] Shishkin G. I., Shishkina L. P., “Skhema Richardsona metoda dekompozitsii resheniya dlya singulyarno vozmuschennogo parabolicheskogo uravneniya reaktsii-diffuzii”, Zh. vychisl. matem. i matem. fiz., 50:12 (2010), 2113–2133 | Zbl

[18] Schlichting H., Boundary layer theory, 7th ed., McGraw-Hill, New York, 1979 | Zbl

[19] Samarskii A. A., Nikolaev E. S., Metody resheniya setochnykh uravnenii, Nauka, M., 1989

[20] Bakhvalov N. S., Zhidkov N. P., Kobelkov G. M., Chislennye metody, Laboratoriya bazovykh znanii, M., 2001

[21] Shishkin G. I., Setochnye approksimatsii singulyarno vozmuschennykh ellipticheskikh i parabolicheskikh uravnenii, UrO RAN, Ekaterinburg, 1992

[22] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967