On a nonlinear eigenmode problem in semiconductor theory
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 5, pp. 872-880 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A model problem in semiconductor physics concerning the natural electrical oscillations in a semiconductor with allowance for strong dissipation and negative differential conductivity is considered. This is a nonlinear boundary value problem, and its solvability is proved by applying S. I. Pohozaev's method of spherical fibering.
@article{ZVMMF_2011_51_5_a9,
     author = {M. O. Korpusov and A. G. Sveshnikov},
     title = {On a~nonlinear eigenmode problem in semiconductor theory},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {872--880},
     year = {2011},
     volume = {51},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_5_a9/}
}
TY  - JOUR
AU  - M. O. Korpusov
AU  - A. G. Sveshnikov
TI  - On a nonlinear eigenmode problem in semiconductor theory
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2011
SP  - 872
EP  - 880
VL  - 51
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_5_a9/
LA  - ru
ID  - ZVMMF_2011_51_5_a9
ER  - 
%0 Journal Article
%A M. O. Korpusov
%A A. G. Sveshnikov
%T On a nonlinear eigenmode problem in semiconductor theory
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2011
%P 872-880
%V 51
%N 5
%U http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_5_a9/
%G ru
%F ZVMMF_2011_51_5_a9
M. O. Korpusov; A. G. Sveshnikov. On a nonlinear eigenmode problem in semiconductor theory. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 5, pp. 872-880. http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_5_a9/

[1] Pokhozhaev S. I., “O sobstvennykh funktsiyakh uravneniya $\Delta u+\lambda f(u)=0$”, Dokl. RAN, 165:1 (1965), 36

[2] Pokhozhaev S. I., “O sobstvennykh funktsiyakh kvazilineinykh ellipticheskikh zadach”, Matem. sb., 82:2 (1970), 192

[3] Kuzin I., Pohozaev S., Entire solutions of semilinear elliptic equations, Nonlinear Different. Equations and their Applic., 33, Birkhäuser, Basel, 1997

[4] Skrypnik I. V., Metody issledovaniya nelineinykh ellipticheskikh granichnykh zadach, Nauka, M., 1990

[5] Klimov V. S., “O funktsionalakh s beskonechnym chislom kriticheskikh znachenii”, Matem. sb., 100:1(5) (1976), 102–116

[6] Lyusternik L. A., Shnirelman L. G., Topologicheskie metody v variatsionnykh zadachakh, Gosizdat, M., 1930

[7] Krasnoselskii M. A., Topologicheskie metody v teorii nelineinykh integralnykh uravnenii, Gostekhteorizdat, M., 1956

[8] Drabek P., Milota Y., Methods of nonlinear analisys. Applications to differential equations, Birkhäser, Basel, 2007, 575 pp.

[9] Ambrosetti A., Rabinowitz P. H., “Dual variational methods in critical point theory and applications”, J. Different. Equations, 14 (1973), 349–381

[10] Clark C. D., “A variant of the Lusternik–Schnirelman theory”, Indiana Univ. Math. J., 22:1 (1972), 65–74

[11] Pokhozhaev S. I., “O metode rassloeniya resheniya nelineinykh kraevykh zadach”, Tr. MIAN SSSR, 192, M., 1990, 146–163

[12] Landau L. D., Lifshits E. M., Elektrodinamika sploshnykh sred. Teoreticheskaya fizika, v. 8, Nauka, M., 1992