Numerical solution of nonlinear inverse coefficient problems for ordinary differential equations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 5, pp. 858-871
Voir la notice de l'article provenant de la source Math-Net.Ru
Parametric identification for a class of nonlinear objects with lumped parameters described by systems of ordinary differential equations is studied. The problem is to recover the coefficients of a dynamical system depending on the phase state. For that purpose, the phase space is subdivided into a finite set of subsets or zones in which the coefficients are assumed to be constant or linear functions of state. Once the coefficients in such a form are obtained, interpolation and approximation can be used to represent the coefficients as functions of the phase variables.
@article{ZVMMF_2011_51_5_a8,
author = {K. R. Aǐda-zade and S. Z. Kuliev},
title = {Numerical solution of nonlinear inverse coefficient problems for ordinary differential equations},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {858--871},
publisher = {mathdoc},
volume = {51},
number = {5},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_5_a8/}
}
TY - JOUR AU - K. R. Aǐda-zade AU - S. Z. Kuliev TI - Numerical solution of nonlinear inverse coefficient problems for ordinary differential equations JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2011 SP - 858 EP - 871 VL - 51 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_5_a8/ LA - ru ID - ZVMMF_2011_51_5_a8 ER -
%0 Journal Article %A K. R. Aǐda-zade %A S. Z. Kuliev %T Numerical solution of nonlinear inverse coefficient problems for ordinary differential equations %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2011 %P 858-871 %V 51 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_5_a8/ %G ru %F ZVMMF_2011_51_5_a8
K. R. Aǐda-zade; S. Z. Kuliev. Numerical solution of nonlinear inverse coefficient problems for ordinary differential equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 5, pp. 858-871. http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_5_a8/