Numerical solution of nonlinear inverse coefficient problems for ordinary differential equations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 5, pp. 858-871 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Parametric identification for a class of nonlinear objects with lumped parameters described by systems of ordinary differential equations is studied. The problem is to recover the coefficients of a dynamical system depending on the phase state. For that purpose, the phase space is subdivided into a finite set of subsets or zones in which the coefficients are assumed to be constant or linear functions of state. Once the coefficients in such a form are obtained, interpolation and approximation can be used to represent the coefficients as functions of the phase variables.
@article{ZVMMF_2011_51_5_a8,
     author = {K. R. Aǐda-zade and S. Z. Kuliev},
     title = {Numerical solution of nonlinear inverse coefficient problems for ordinary differential equations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {858--871},
     year = {2011},
     volume = {51},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_5_a8/}
}
TY  - JOUR
AU  - K. R. Aǐda-zade
AU  - S. Z. Kuliev
TI  - Numerical solution of nonlinear inverse coefficient problems for ordinary differential equations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2011
SP  - 858
EP  - 871
VL  - 51
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_5_a8/
LA  - ru
ID  - ZVMMF_2011_51_5_a8
ER  - 
%0 Journal Article
%A K. R. Aǐda-zade
%A S. Z. Kuliev
%T Numerical solution of nonlinear inverse coefficient problems for ordinary differential equations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2011
%P 858-871
%V 51
%N 5
%U http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_5_a8/
%G ru
%F ZVMMF_2011_51_5_a8
K. R. Aǐda-zade; S. Z. Kuliev. Numerical solution of nonlinear inverse coefficient problems for ordinary differential equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 5, pp. 858-871. http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_5_a8/

[1] Aida-zade K. R., Ismibeyli R. E., “Numerical method of identification of dynamic system parameters”, Abstracts Internat. Conf. “Inverse Problems: Modeling and Simulation”. Fethiye, Turkey, 2004, 7–9

[2] Hasanov A., “Inverse coefficient problems for monotone potential operators and elastoplastic identification”, Abstracts Internat. Conf. “Inverse Problems: Modeling and Simulation”. Fethiye, Turkey, 2004, 70–71

[3] Mukhambetzhanov S. T., Tilepiev M. Sh., Urazmagambetova E. U., “Identification of coefficients in mathematical model of Mascet Leveret”, Abstracts Internat. Conf. “Inverse Problems: Modeling and Simulation”. Fethiye, Turkey, 2004, 123–124

[4] Vasilev F. P., Metody optimizatsii, Faktorial Press, M., 2002

[5] Evtushenko Yu. G., Metody resheniya ekstremalnykh zadach i ikh primenenie v sistemakh optimizatsii, Nauka, M., 1982

[6] Boiko I., Discontinuous control systems: frequency-domain analysis and design, Birkhäuser, Boston, 2009

[7] Bengea S. C., Raymond A. C., “Optimal control of switching systems”, Automatica, 41 (2005), 11–27

[8] Capuzzo D. I., Evans L. C., “Optimal switching for ordinary differential equations”, SIAM J. Control and Optimizat., 22:1 (1984), 143–161