Functional gradient evaluation in the optimal control of a complex dynamical system
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 5, pp. 814-833 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The gradient of the cost functional in a discrete optimal control problem for metal solidification in metal casting is exactly calculated. In contrast to previous studies, the object under analysis has a complex geometric shape. The mathematical model for describing the solidification process is based on a three-dimensional two-phase initial–boundary value problem of the Stefan type. Formulas for exact gradient evaluation are derived using the fast automatic differentiation technique.
@article{ZVMMF_2011_51_5_a6,
     author = {A. V. Albu and A. F. Albu and V. I. Zubov},
     title = {Functional gradient evaluation in the optimal control of a~complex dynamical system},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {814--833},
     year = {2011},
     volume = {51},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_5_a6/}
}
TY  - JOUR
AU  - A. V. Albu
AU  - A. F. Albu
AU  - V. I. Zubov
TI  - Functional gradient evaluation in the optimal control of a complex dynamical system
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2011
SP  - 814
EP  - 833
VL  - 51
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_5_a6/
LA  - ru
ID  - ZVMMF_2011_51_5_a6
ER  - 
%0 Journal Article
%A A. V. Albu
%A A. F. Albu
%A V. I. Zubov
%T Functional gradient evaluation in the optimal control of a complex dynamical system
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2011
%P 814-833
%V 51
%N 5
%U http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_5_a6/
%G ru
%F ZVMMF_2011_51_5_a6
A. V. Albu; A. F. Albu; V. I. Zubov. Functional gradient evaluation in the optimal control of a complex dynamical system. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 5, pp. 814-833. http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_5_a6/

[1] Evtushenko Y. G., “Computation of exact gradients in distributed dynamic systems”, Optimizat. Methods and Software, 9 (1998), 45–75

[2] Albu A. F., Zubov V. I., “Vychislenie gradienta funktsionala v odnoi zadache optimalnogo upravleniya, svyazannoi s kristallizatsiei metalla”, Zh. vychisl. matem. i matem. fiz., 49:1 (2009), 51–75

[3] Albu A. F., Zubov V. I., “Matematicheskoe modelirovanie i issledovanie protsessa kristallizatsii metalla v liteinom dele”, Zh. vychisl. matem. i matem. fiz., 47:5 (2007), 882–902

[4] Albu A. F., Zubov V. I., “Ob optimalnom upravlenii protsessom kristallizatsii metalla v liteinom dele”, Zh. vychisl. matem. i matem. fiz., 48:5 (2008), 851–862

[5] Albu A. F., Zubov V. I., “O vybore funktsionala i raznostnoi skhemy pri reshenii zadachi optimalnogo upravleniya protsessom kristallizatsii metalla”, Zh. vychisl. matem. i matem. fiz., 51:1 (2011), 24–38

[6] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1977