Bilinear optimization in the analysis of multicriteria problems using criteria importance theory under inexact information about preferences
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 5, pp. 802-813 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Exact efficient numerical methods are proposed for solving bilinear optimization problems that arise when various solution variants are compared based on their preferability using an additive value function in the case of interval estimates of the degrees of superiority of certain criteria over others and in the case of interval restrictions on the growth of preferences along the criteria range.
@article{ZVMMF_2011_51_5_a5,
     author = {A. P. Nelyubin and V. V. Podinovskii},
     title = {Bilinear optimization in the analysis of multicriteria problems using criteria importance theory under inexact information about preferences},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {802--813},
     year = {2011},
     volume = {51},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_5_a5/}
}
TY  - JOUR
AU  - A. P. Nelyubin
AU  - V. V. Podinovskii
TI  - Bilinear optimization in the analysis of multicriteria problems using criteria importance theory under inexact information about preferences
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2011
SP  - 802
EP  - 813
VL  - 51
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_5_a5/
LA  - ru
ID  - ZVMMF_2011_51_5_a5
ER  - 
%0 Journal Article
%A A. P. Nelyubin
%A V. V. Podinovskii
%T Bilinear optimization in the analysis of multicriteria problems using criteria importance theory under inexact information about preferences
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2011
%P 802-813
%V 51
%N 5
%U http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_5_a5/
%G ru
%F ZVMMF_2011_51_5_a5
A. P. Nelyubin; V. V. Podinovskii. Bilinear optimization in the analysis of multicriteria problems using criteria importance theory under inexact information about preferences. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 5, pp. 802-813. http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_5_a5/

[1] Shtoier R., Mnogokriterialnaya optimizatsiya. Teoriya, vychisleniya i prilozheniya, Radio i svyaz, M., 1992

[2] Saati T., Prinyatie reshenii. Metod analiza ierarkhii, Radio i svyaz, M., 1993

[3] Larichev O. I., Teoriya i metody prinyatiya reshenii: Uchebnik, Izd. trete, pererab. i dop., Universitetskaya kniga, Logos, M., 2006

[4] Lotov A. V., Pospelova I. I., Mnogokriterialnye zadachi prinyatiya reshenii: Uch. posobie, Izdat. otdel f-ta VMiK MGU, MAKS Press, M., 2008

[5] Podinovskii V. V., “Kolichestvennaya vazhnost kriteriev”, Avtomatika i telemekhan., 2000, no. 5, 110–123

[6] Podinovski V. V., “The quantitative importance of criteria for MCDA”, J. Multi-Criteria Decision Analys., 11 (2002), 1–15

[7] Podinovskii V. V., Vvedenie v teoriyu vazhnosti kriteriev v mnogokriterialnykh zadachakh prinyatiya reshenii, Uch. posobie, Fizmatlit, M., 2007

[8] Edwards W., Barron F. H., “SMARTS and SMARTER: improved simple methods for multiattribute utility measurement”, Organizat. Behavior and Human Proc., 60 (1994), 306–325

[9] Podinovskii V. V., “Kolichestvennaya vazhnost kriteriev s diskretnoi shkaloi pervoi poryadkovoi metriki”, Avtomatika i telemekhan., 2004, no. 8, 196–203

[10] Podinovski V. V., “On the use of importance information in MCDA problems with criteria measured on the first ordered metric scale”, J. Multi-Criteria Decision Analys., 15 (2009), 163–174

[11] Podinovskii V. V., “Intervalnye otsenki vazhnosti kriteriev v mnogokriterialnoi optimizatsii”, Informatsionnye tekhnologii modelirovaniya i upravleniya, 2006, no. 8(33), 975–979

[12] Podinovskii V. V., “Intervalnye otsenki vazhnosti kriteriev v mnogokriterialnom vybore”, Sistemy upravleniya i informatsionnye tekhnologii, 2007, no. 1(27), 22–26

[13] Podinovskii V. V., “Intervalnaya informatsiya o vazhnosti kriteriev v analize mnogokriterialnykh zadach prinyatiya reshenii”, Nauchno-tekhn. informatsiya. Ser. 2. Informatsionnye protsessy i sistemy, 2007, no. 6, 15–18

[14] Kini R. L., Raifa Kh., Prinyatie reshenii pri mnogikh kriteriyakh: predpochteniya i zamescheniya, Radio i svyaz, M., 1981

[15] Podinovskii V. V., “Analiz reshenii pri mnozhestvennykh otsenkakh koeffitsientov vazhnosti kriteriev i veroyatnostei znachenii neopredelennykh faktorov v tselevoi funktsii”, Avtomatika i telemekhan., 2004, no. 11, 141–159

[16] Strekalovskii A. S., Orlov A. V., Bimatrichnye igry i bilineinoe programmirovanie, Fizmatlit, M., 2007

[17] Floudas C. A., Visweswaran V., “Quadratic optimization”, Handbook of Global Optimization, Kluwer, Dordrecht, 1995, 217–269

[18] Konno H., “A cutting plane algorithm for solving bilinear programs”, Math. Programming, 11 (1976), 14–27

[19] Ding X., Al-Khayyal F., “Accelerating convergence of cutting plane algorithms for disjoint bilinear programming”, J. Global Optimizat., 38 (2007), 421–436

[20] Salo A. A., Hämäläinen R. P., “Preference assessment by imprecise ratio statements”, Operat. Res., 40 (1992), 1053–1061

[21] Salo A. A., Hämäläinen R. P., “Preference programming through approximate ratio comparisons”, European J. Operat. Res., 82 (1995), 458–475

[22] Mateos A., Jiménez A., Ros-Insua S., “Solving dominance and potential optimality in imprecise multi-attribute additive problems”, Reliability Engng and System Safety, 79 (2003), 253–262

[23] Eum Y. S., Park K. S., Kim S. H., “Establishing dominance and potential optimality in multi-criteria analysis with imprecise weight and value”, Comput. and Operat. Res., 28 (2001), 397–409

[24] Lee K. S., Park K. S., Kim S. H., Park K., “Extended methods for identifying dominance and potential optimality in multi-criteria analysis with imprecise information”, European J. Operat. Res., 134 (2001), 557–563

[25] Podinovskii V. V., “Ob odnom podkhode k resheniyu zadach nelineinogo programmirovaniya pri netochnoi informatsii o koeffitsientakh vazhnosti i gradatsiyakh shkal kriteriev v additivnoi funktsii tsennosti”, Nauchno-tekhn. informatsiya. Ser. 2. Informatsionnye protsessy i sistemy, 2010, no. 4, 26–28

[26] Podinovskii V. V., Nelyubin A. P., “Bilineinoe programmirovanie v analize mnogokriterialnykh zadach prinyatiya reshenii metodami teorii vazhnosti kriteriev”, Materialy XXXVI Mezhdunar. konf. “Informatsionnye tekhnologii v nauke, sotsiologii, ekonomike i biznese” Prilozh. k zh. “Otkrytoe obrazovanie” (Ukraina, Yalta–Gurzuf, 20–30 maya 2009 g.), 2009, 146–148

[27] Horst R., Pardalos P., Thoai N., Introduction to global optimization, 2-d ed., Springer, Boston, 2000

[28] Nahapetyan A. G., “Bilinear programming”, Encyclopedia Optimizat., 2009, 279–282

[29] Gertz E. M., Wright S., “Object-oriented software for quadratic programming”, ACM Trans. Math. Software, 29 (2003), 58–81

[30] Gertz E. M., Wright S., “OOQP user guide”, Math. and Comput. Sci. Division Techn. Memorandum, 252 (2001), 1–62

[31] Podinovskii V. V., Potapov M. A., “Teoreticheskie osnovy i sistemy podderzhki prinyatiya mnogokriterialnykh reshenii”, Materialy XXXIV Mezhdunar. konf. “Informatsionnye tekhnologii v nauke, obrazovanii, telekommunikatsii i biznese”. Prilozh. k zh. “Otkrytoe obrazovanie” (Ukraina, Gurzuf, 20–30 maya 2007 g.), 2007, 87–89

[32] Podinovskii V. V., “Analiz zadach mnogokriterialnogo vybora metodami teorii vazhnosti kriteriev pri pomoschi kompyuternykh sistem podderzhki prinyatiya reshenii”, Izv. RAN. Teoriya i sistemy upravleniya, 2008, no. 2, 64–68