@article{ZVMMF_2011_51_5_a4,
author = {E. A. Nurminski},
title = {Fejer algorithms with an adaptive step},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {791--801},
year = {2011},
volume = {51},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_5_a4/}
}
E. A. Nurminski. Fejer algorithms with an adaptive step. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 5, pp. 791-801. http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_5_a4/
[1] Nurminskii E. A., “Ispolzovanie dopolnitelnykh malykh vozdeistvii v feierovskikh modelyakh iterativnykh algoritmov”, Zh. vychisl. matem. i matem. fiz., 48:12 (2008), 2121–2128
[2] Nurminskii E. A., “Feierovskie protsessy c malymi vozmuscheniyami”, Dokl. RAN, 422:5 (2008), 601–604
[3] Nurminski E. A., “Envelope stepsize control for iterative algorithms based on Fejer processes with attractants”, Optmizat. Methods and Software, 25:1 (2010), 97–108
[4] Vasin V. V., Eremin I. I., Operatory i iteratsionnye protsessy feierovskogo tipa. Teoriya i prilozheniya, UrO RAN, Ekaterinburg, 2005
[5] Bauschke H. H., Borwein J. M., “On projection algorithms for solving convex feasibility problems”, SIAM Revs, 38:3 (1996), 367–426
[6] Pshenichnyi B. N., Vypuklyi analiz i ekstremalnye zadachi, Nauka, M., 1980
[7] Nurminskii E. A., Chislennye metody vypukloi optimizatsii, Nauka, M., 1991
[8] Fukushima M., “A relaxed projection method for variational inequalities”, Math. Program., 35 (1986), 58–70
[9] Byrne C. L., “A unified treatment of some iterative algorithms in signal processing and image reconstruction”, Inverse Problems, 20:1 (2004), 103–120
[10] Yang Q., “The relaxed CQ algorithm solving the split feasibility problem”, Inverse Problems, 20:4 (2004), 1261–1266
[11] “Nonsmooth optimization”, Proc. IASA Workshop, March 28–April 8, 1977, Internat. Inst. Appl. Systems Analys. IIASA proc. series, 3, eds. Lemarechal C., Mifflin R., Pergamon Press, Oxford, 1978
[12] Sovmestnyi rossiisko-ukrainskii proekt RFFI (Rossiiskii fond fundamentalnykh issledovanii, Rossiya) i DFFD (Derzhavnii fond fundamentalnikh doslidzhen, Ukraina) “Subgradientnye metody uskorennoi skhodimosti v zadachakh vypuklogo programmirovaniya”, [Elektronnyi resurs]. Metod dostupa http://elis.dvo.ru