@article{ZVMMF_2011_51_5_a3,
author = {B. I. Kvasov},
title = {Hyperbolic spline interpolation algorithms},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {771--790},
year = {2011},
volume = {51},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_5_a3/}
}
B. I. Kvasov. Hyperbolic spline interpolation algorithms. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 5, pp. 771-790. http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_5_a3/
[1] Kvasov B. I., Metody izogeometricheskoi approksimatsii splainami, Fizmatlit, M., 2006
[2] Schweikert D. G., “An interpolating curve using a spline in tension”, J. Math. Phys., 45 (1966), 312–317
[3] Koch P. E., Lyche T. I, “nterpolation with exponential B-splines in tension”, Geometric Modelling, Computing, 8, Supplementum, Springer-Verlag, Wien, 1993, 173–190
[4] Marušić M., Rogina M., “Sharp error bounds for interpolating splines in tension”, J. Comput. Appl. Math., 61 (1995), 205–223
[5] McCartin B. J., “Theory of exponential splines”, J. Approx. Theory, 66 (1999), 1–23
[6] Sapidis N. S., Kaklis P. D., “An algorithm for constructing convexity and monotonicity-preserving splines in tension”, Comput. Aided Geometric Design, 5 (1988), 127–137
[7] Späth H., One dimensional spline interpolation algorithms, A K Peters, Massachusetts, 1995
[8] Renka R. J., “Interpolation tension splines with automatic selection of tension factors”, SIAM J. Sci. Stat. Comput., 8 (1987), 393–415
[9] Rentrop P., “An algorithm for the computation of exponential splines”, Numer. Math., 35 (1980), 81–93
[10] Lyulka V. A., Romanenko A. V., “Postroenie interpolyatsionnykh krivykh metodom setok”, Zh. vychisl. matem. i matem. fiz., 34:6 (1994), 826–836
[11] Lyulka V. A., Mikhailov I. E., “O postroenii interpolyatsionnykh krivykh”, Zh. vychisl. matem. i matem. fiz., 43:10 (2003), 1448–1450
[12] Paasonen V. I., “Parallelnyi algoritm postroeniya giperbolicheskikh splainov”, Vychisl. tekhnologii, 11:6 (2006), 87–95
[13] Costantini P., Kvasov B. I., Manni C., “On discrete hyperbolic tension splines”, Adv. Comput. Math., 11 (1999), 331–354
[14] Kvasov B. I., Methods of shape-preserving spline approximation, World Scient. Publ. Co. Pte. Ltd., Singapore, 2000
[15] Kvasov B. I., “O postroenii interpolyatsionnykh giperbolicheskikh splainov”, Zh. vychisl. matem. i matem. fiz., 48:4 (2008), 570–579
[16] Rogina M., Singer S., “Conditions of matrices in discrete tension spline approximations of DMBVP”, Ann. Univ. Ferrara, 53 (2007), 393–404
[17] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1977
[18] Konovalov A. N., Vvedenie v vychislitelnye metody lineinoi algebry, VO Nauka, Novosibirsk, 1993
[19] Yanenko N. N., Konovalov A. N., Bugrov A. N., Shustov G. V., “Ob organizatsii parallelnykh vychislenii i rasparallelivanii progonki”, Chisl. metody mekhan. sploshnoi sredy, 9, no. 7, Novosibirsk, 1978, 139–146
[20] Kvasov B. I., “Approximation by discrete GB-splines”, Numer. Algorithms., 27 (2001), 169–188
[21] Golub Dzh., Van Doan Ch. F., Matrichnye vychisleniya, Mir, M., 1999
[22] Akima H., “A new method of interpolation and smooth curve fitting based on local procedures”, J. Assoc. Comput. Machinery, 17 (1970), 589–602
[23] Zavyalov Yu. S., Kvasov B. I., Miroshnichenko V. L., Metody splain-funktsii, Nauka, M., 1980