Hyperbolic spline interpolation algorithms
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 5, pp. 771-790

Voir la notice de l'article provenant de la source Math-Net.Ru

Isogeometric interpolation by hyperbolic splines is formulated as a differential multipoint boundary value problem. A discretization of this problem results in the necessity of solving a linear system with a five-diagonal matrix. This system can be ill-conditioned if the data are nonuniformly distributed. It is shown that this system can be split into tridiagonal systems with the property of diagonal dominance. The latter do not require that hyperbolic functions be evaluated. Their solution is numerically stable and can be efficiently parallelized on the basis of the superposition principle. For quasiuniform grids, these systems have positive definite matrices. Algorithms for parallelizing calculations in the case of tri- and five-diagonal systems are given.
@article{ZVMMF_2011_51_5_a3,
     author = {B. I. Kvasov},
     title = {Hyperbolic spline interpolation algorithms},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {771--790},
     publisher = {mathdoc},
     volume = {51},
     number = {5},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_5_a3/}
}
TY  - JOUR
AU  - B. I. Kvasov
TI  - Hyperbolic spline interpolation algorithms
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2011
SP  - 771
EP  - 790
VL  - 51
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_5_a3/
LA  - ru
ID  - ZVMMF_2011_51_5_a3
ER  - 
%0 Journal Article
%A B. I. Kvasov
%T Hyperbolic spline interpolation algorithms
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2011
%P 771-790
%V 51
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_5_a3/
%G ru
%F ZVMMF_2011_51_5_a3
B. I. Kvasov. Hyperbolic spline interpolation algorithms. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 5, pp. 771-790. http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_5_a3/