Hyperbolic spline interpolation algorithms
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 5, pp. 771-790 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Isogeometric interpolation by hyperbolic splines is formulated as a differential multipoint boundary value problem. A discretization of this problem results in the necessity of solving a linear system with a five-diagonal matrix. This system can be ill-conditioned if the data are nonuniformly distributed. It is shown that this system can be split into tridiagonal systems with the property of diagonal dominance. The latter do not require that hyperbolic functions be evaluated. Their solution is numerically stable and can be efficiently parallelized on the basis of the superposition principle. For quasiuniform grids, these systems have positive definite matrices. Algorithms for parallelizing calculations in the case of tri- and five-diagonal systems are given.
@article{ZVMMF_2011_51_5_a3,
     author = {B. I. Kvasov},
     title = {Hyperbolic spline interpolation algorithms},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {771--790},
     year = {2011},
     volume = {51},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_5_a3/}
}
TY  - JOUR
AU  - B. I. Kvasov
TI  - Hyperbolic spline interpolation algorithms
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2011
SP  - 771
EP  - 790
VL  - 51
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_5_a3/
LA  - ru
ID  - ZVMMF_2011_51_5_a3
ER  - 
%0 Journal Article
%A B. I. Kvasov
%T Hyperbolic spline interpolation algorithms
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2011
%P 771-790
%V 51
%N 5
%U http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_5_a3/
%G ru
%F ZVMMF_2011_51_5_a3
B. I. Kvasov. Hyperbolic spline interpolation algorithms. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 5, pp. 771-790. http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_5_a3/

[1] Kvasov B. I., Metody izogeometricheskoi approksimatsii splainami, Fizmatlit, M., 2006

[2] Schweikert D. G., “An interpolating curve using a spline in tension”, J. Math. Phys., 45 (1966), 312–317

[3] Koch P. E., Lyche T. I, “nterpolation with exponential B-splines in tension”, Geometric Modelling, Computing, 8, Supplementum, Springer-Verlag, Wien, 1993, 173–190

[4] Marušić M., Rogina M., “Sharp error bounds for interpolating splines in tension”, J. Comput. Appl. Math., 61 (1995), 205–223

[5] McCartin B. J., “Theory of exponential splines”, J. Approx. Theory, 66 (1999), 1–23

[6] Sapidis N. S., Kaklis P. D., “An algorithm for constructing convexity and monotonicity-preserving splines in tension”, Comput. Aided Geometric Design, 5 (1988), 127–137

[7] Späth H., One dimensional spline interpolation algorithms, A K Peters, Massachusetts, 1995

[8] Renka R. J., “Interpolation tension splines with automatic selection of tension factors”, SIAM J. Sci. Stat. Comput., 8 (1987), 393–415

[9] Rentrop P., “An algorithm for the computation of exponential splines”, Numer. Math., 35 (1980), 81–93

[10] Lyulka V. A., Romanenko A. V., “Postroenie interpolyatsionnykh krivykh metodom setok”, Zh. vychisl. matem. i matem. fiz., 34:6 (1994), 826–836

[11] Lyulka V. A., Mikhailov I. E., “O postroenii interpolyatsionnykh krivykh”, Zh. vychisl. matem. i matem. fiz., 43:10 (2003), 1448–1450

[12] Paasonen V. I., “Parallelnyi algoritm postroeniya giperbolicheskikh splainov”, Vychisl. tekhnologii, 11:6 (2006), 87–95

[13] Costantini P., Kvasov B. I., Manni C., “On discrete hyperbolic tension splines”, Adv. Comput. Math., 11 (1999), 331–354

[14] Kvasov B. I., Methods of shape-preserving spline approximation, World Scient. Publ. Co. Pte. Ltd., Singapore, 2000

[15] Kvasov B. I., “O postroenii interpolyatsionnykh giperbolicheskikh splainov”, Zh. vychisl. matem. i matem. fiz., 48:4 (2008), 570–579

[16] Rogina M., Singer S., “Conditions of matrices in discrete tension spline approximations of DMBVP”, Ann. Univ. Ferrara, 53 (2007), 393–404

[17] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1977

[18] Konovalov A. N., Vvedenie v vychislitelnye metody lineinoi algebry, VO Nauka, Novosibirsk, 1993

[19] Yanenko N. N., Konovalov A. N., Bugrov A. N., Shustov G. V., “Ob organizatsii parallelnykh vychislenii i rasparallelivanii progonki”, Chisl. metody mekhan. sploshnoi sredy, 9, no. 7, Novosibirsk, 1978, 139–146

[20] Kvasov B. I., “Approximation by discrete GB-splines”, Numer. Algorithms., 27 (2001), 169–188

[21] Golub Dzh., Van Doan Ch. F., Matrichnye vychisleniya, Mir, M., 1999

[22] Akima H., “A new method of interpolation and smooth curve fitting based on local procedures”, J. Assoc. Comput. Machinery, 17 (1970), 589–602

[23] Zavyalov Yu. S., Kvasov B. I., Miroshnichenko V. L., Metody splain-funktsii, Nauka, M., 1980