Certain first-order iterative methods for mixed variational inequalities in a Hilbert space
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 5, pp. 762-770 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For a certain class of mixed variational inequalities in a Hilbert space, first-order iterative methods of the proximal type are constructed, and sufficient conditions for them to converge strongly to a solution of the original problem are obtained.
@article{ZVMMF_2011_51_5_a2,
     author = {I. P. Ryazantseva},
     title = {Certain first-order iterative methods for mixed variational inequalities in {a~Hilbert} space},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {762--770},
     year = {2011},
     volume = {51},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_5_a2/}
}
TY  - JOUR
AU  - I. P. Ryazantseva
TI  - Certain first-order iterative methods for mixed variational inequalities in a Hilbert space
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2011
SP  - 762
EP  - 770
VL  - 51
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_5_a2/
LA  - ru
ID  - ZVMMF_2011_51_5_a2
ER  - 
%0 Journal Article
%A I. P. Ryazantseva
%T Certain first-order iterative methods for mixed variational inequalities in a Hilbert space
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2011
%P 762-770
%V 51
%N 5
%U http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_5_a2/
%G ru
%F ZVMMF_2011_51_5_a2
I. P. Ryazantseva. Certain first-order iterative methods for mixed variational inequalities in a Hilbert space. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 5, pp. 762-770. http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_5_a2/

[1] Vainberg M. M., Variatsionnyi metod i metod monotonnykh operatorov v teorii nelineinykh uravnenii, Nauka, M., 1972

[2] Ryazantseva I. P., Izbrannye glavy teorii operatorov monotonnogo tipa, NGTU, Nizhnii Novgorod, 2008

[3] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972

[4] Dyuvo G., Lions Zh.-L., Neravenstva v mekhanike i fizike, Mir, M., 1980

[5] Baiokki K., Kapelo A., Variatsionnye i kvazivariatsionnye neravenstva. Prilozheniya k zadacham so svobodnoi granitsei, Nauka, M., 1988

[6] Badriev I. B., Zadvornov O. A., “Iteratsionnye metody resheniya variatsionnykh neravenstv vtorogo roda s obratno silno monotonnymi operatorami”, Izv. vuzov. Matematika, 2003, no. 1, 20–28

[7] Konnov I. V., “Kombinirovannyi metod dlya resheniya variatsionnykh neravenstv s monotonnymi operatorami”, Zh. vychisl. matem. i matem. fiz., 39:7 (1999), 1091–1097

[8] Konnov I. V., Pinyagina O. V., “Metod spuska po intervalnoi funktsii dlya negladkikh zadach ravnovesiya”, Izv. vuzov. Matematika, 2003, no. 12, 71–77

[9] Antipin A. S., Vasilev F. P., “Metody regulyarizatsii dlya resheniya neustoichivykh zadach ravnovesnogo programmirovaniya so svyazannymi ogranicheniyami”, Zh. vychisl. matem. i matem. fiz., 45:1 (2005), 27–40

[10] Konnov I. V., Pinyagina O. V., “Metod spuska s netochnym lineinym poiskom dlya negladkikh ravnovesnykh zadach”, Zh. vychisl. matem. i matem. fiz., 48:10 (2008), 1812–1818

[11] Rockafellar R. T., “Monotone operators and the proximal point algorithm”, SIAM J. Control and Optimizat., 14:5 (1976), 877–898

[12] Apartsin A. S., “K postroeniyu skhodyaschikhsya iteratsionnykh protsessov v gilbertovom prostranstve”, Tr. po prikl. matem. i kibernetike, Irkutsk, 1972, 7–14

[13] Gaevskii Kh., Greger K., Zakharias K., Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Mir, M., 1978

[14] Vasilev F. P., Chislennye metody resheniya ekstremalnykh zadach, Nauka, M., 1988

[15] Antipin A. S., “Nepreryvnye i iterativnye protsessy s operatorami proektirovaniya i tipa proektirovaniya”, Vopr. kibernetiki. Vychisl. voprosy analiza bolshikh sistem, Nauchn. sovet po kompleksnoi probleme “Kibernetika” AN SSSR, M., 1989, 5–43