Loaded complex equations in the jet collision problem
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 5, pp. 936-955 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The evolution of small perturbations developing on the free surface of the flow in a 270${}^\circ$ corner is studied. Linear equations of motion are derived, which are solved numerically. The flow is shown to be stable in Eulerian coordinates and unstable in Lagrangian coordinates.
@article{ZVMMF_2011_51_5_a14,
     author = {E. N. Zhuravleva and E. A. Karabut},
     title = {Loaded complex equations in the jet collision problem},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {936--955},
     year = {2011},
     volume = {51},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_5_a14/}
}
TY  - JOUR
AU  - E. N. Zhuravleva
AU  - E. A. Karabut
TI  - Loaded complex equations in the jet collision problem
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2011
SP  - 936
EP  - 955
VL  - 51
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_5_a14/
LA  - ru
ID  - ZVMMF_2011_51_5_a14
ER  - 
%0 Journal Article
%A E. N. Zhuravleva
%A E. A. Karabut
%T Loaded complex equations in the jet collision problem
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2011
%P 936-955
%V 51
%N 5
%U http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_5_a14/
%G ru
%F ZVMMF_2011_51_5_a14
E. N. Zhuravleva; E. A. Karabut. Loaded complex equations in the jet collision problem. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 5, pp. 936-955. http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_5_a14/

[1] Karabut E. A., “Malye vozmuscheniya v zadache o soudarenii strui. Osnovnye uravneniya”, Prikl. mekhan. i tekhn. fiz., 50:6 (2009), 36–54

[2] Karabut E. A., “Metod Fure v zadache o vozmuscheniyakh soudaryayuschikhsya strui”, Prikl. mekhan. i tekhn. fiz., 51:6 (2010), 3–20

[3] Lavrentev M. A., Shabat B. V., Metody teorii funktsii kompleksnogo peremennogo, Nauka, M., 1987

[4] Karabut E. A., “Asymptotic expansions in the problem of a solitary wave”, J. Fluid Mech., 319 (1996), 109–123

[5] Karabut E. A., “An approximation for the highest gravity waves on water of finite depth”, J. Fluid Mech., 372 (1998), 45–70

[6] Karabut E. A., “Vysshie priblizheniya teorii knoidalnykh voln”, Prikl. mekhan. i tekhn. fiz., 41:1 (2000), 92–104

[7] Karabut E. A., “Tochnoe reshenie odnoi nelineinoi kraevoi zadachi teorii voln na poverkhnosti zhidkosti konechnoi glubiny”, Prikl. matem. i mekhan., 73:5 (2009), 741–762

[8] Ikramov Kh. D., Zadachnik po lineinoi algebre, Nauka, M., 1975

[9] Fox J. L., Morgan G. W., “On the stability of some flows of an ideal fluid with free surfaces”, Quarterly Appl. Math., 11:4 (1954), 439–456

[10] Utkin A. V., Dremin A. N., “Neustoichivost techeniya, voznikayuschego pri simmetrichnom soudarenii strui idealnoi zhidkosti”, Fiz. goreniya i vzryva, 22:3 (1986), 103–109

[11] Utkin A. V., “Neustoichivost techeniya, voznikayuschego pri soudarenii strui idealnoi zhidkosti”, Prikl. mekhan. i tekhn. fiz., 1988, no. 6, 102–107