High-order accurate implicit running schemes
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 5, pp. 920-935 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An approach to the construction of high-order accurate implicit predictor–corrector schemes is proposed. The accuracy is improved by choosing a special time integration step for computing numerical fluxes through cell interfaces by using an unconditionally stable implicit scheme. For smooth solutions of advection equations with constant coefficients, the scheme is second-order accurate. Implicit difference schemes for multidimensional advection equations are constructed on the basis of Godunov's method with splitting over spatial variables as applied to the computation of “large” values at an intermediate layer. The numerical solutions obtained for advection equations and the radiative transfer equations in a vacuum are compared with their exact solutions. The comparison results confirm that the approach is efficient and that the accuracy of the implicit predictor–corrector schemes is improved.
@article{ZVMMF_2011_51_5_a13,
     author = {N. Ya. Moiseev},
     title = {High-order accurate implicit running schemes},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {920--935},
     year = {2011},
     volume = {51},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_5_a13/}
}
TY  - JOUR
AU  - N. Ya. Moiseev
TI  - High-order accurate implicit running schemes
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2011
SP  - 920
EP  - 935
VL  - 51
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_5_a13/
LA  - ru
ID  - ZVMMF_2011_51_5_a13
ER  - 
%0 Journal Article
%A N. Ya. Moiseev
%T High-order accurate implicit running schemes
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2011
%P 920-935
%V 51
%N 5
%U http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_5_a13/
%G ru
%F ZVMMF_2011_51_5_a13
N. Ya. Moiseev. High-order accurate implicit running schemes. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 5, pp. 920-935. http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_5_a13/

[1] Yanenko N. N., Metod drobnykh shagov resheniya mnogomernykh zadach matematicheskoi fiziki, Nauka, Novosibirsk, 1967

[2] Marchuk G. I., Metody rasschepleniya, Nauka, M., 1988

[3] Kovenya V. M., Yanenko N. N., Metod rasschepleniya v zadachakh gazovoi dinamiki, Nauka, SO, Novosibirsk, 1981

[4] Rozhdestvenskii B. L., Yanenko N. N., Sistemy kvazilineinykh uravnenii i ikh primenenie k gazovoi dinamike, Nauka, M., 1978

[5] Godunov S. K., Zabrodin A. V., Ivanov M. Ya. i dr., Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki, Nauka, M., 1976

[6] Samarskii A. A., Vvedenie v teoriyu raznostnykh skhem, Nauka, M., 1971

[7] Brian P. L., “An finite difference method of high order accuracy for solution of three dimensional heat conduction problems”, A.I. Ch. E.J., 1961, no. 7, 367–370

[8] Douglas J., Jones B. F., “On predictor-corrector methods for nonlinear parabolic differential equations”, J. Soc. Industr. Appl. Math., 11:1 (1963), 195–204

[9] Douglas J., Jr., “The application of stability analysis in the numerical solution of quasi-linear parabolic differential equations”, Trans. Amer. Math. Soc., 89 (1958), 484–518

[10] Godunov S. K., Semendyaev K. A., “Raznostnye metody chislennogo resheniya zadach gazovoi dinamiki”, Zh. vychisl. matem. i matem. fiz., 2:1 (1962), 3–14

[11] Godunov S. K., Raznostnye metody dlya uravnenii gazovoi dinamiki, Lektsii dlya studentov NGU, Novosibirsk, 1962

[12] Alalykin G. B., Godunov S. K., Kireeva I. L. i dr., Reshenie odnomernykh zadach gazovoi dinamiki v podvizhnykh setkakh, Nauka, M., 1970

[13] Yanenko N. N., Yaushev I. K., “Ob odnoi absolyutno ustoichivoi skheme integrirovaniya uravnenii gidrodinamiki”, Raznostnye metody resheniya zadach matem. fiz., Tr. MIAN, 74, M., 1966

[14] Rikhtmaier R., Morton K., Raznostnye metody resheniya kraevykh zadach, Mir, M., 1972

[15] Landau L. D., Meiman N. N., Khalatnikov I. M., “Chislennye metody integrirovaniya uravnenii v chastnykh proizvodnykh metodom setok”, Tr. III Vses. matem. s'ezda, v. II, M., 1958

[16] Van Leer B. J., “Towards the ultimate conservative difference scheme. Second-order sequl to Godunov's method”, J. Comput. Phys., 32:1 (1979), 101–136

[17] Colella P., Woodward P. R., “The piecewise parabolic method (PPM) for gas dynamical simulations”, J. Comput. Phys., 54:1 (1984), 174–201

[18] Ivanov M. Ya., Liberzon A. S., Nigmatulin R. Z. i dr., “Chislennoe modelirovanie transzvukovykh prostranstvennykh techenii nevyazkogo gaza s primeneniem monotonnykh raznostnykh skhem povyshennoi tochnosti”, Sb. nauch. tr., eds. G. P. Voskresenskii, A. V. Zabrodin, IPMatem. RAN, M., 1989, 207–211

[19] Harten A., “High resolutions schemes for hyperbolic conservation laws”, J. Comput. Phys., 49 (1983), 357–393

[20] Andreev E. S., Gusev V. Yu., Kozmanov M. Yu., “Metody povysheniya tochnosti skhemy pervogo poryadka approksimatsii dlya resheniya uravnenii perenosa izlucheniya”, VANT. Ser. Matem. modelirovanie fiz. protsessov, 1998, no. 1, 15–18

[21] Vershinskaya A. S., Gadzhiev A. D., Grabovenskaya S. A., Shestakov A. A., “Primenenie TVD-podkhoda k resheniyu uravneniya perenosa teplovogo izlucheniya v priblizhenii”, VANT. Ser. Matem. modelirovanie fiz. protsessov, 2009, no. 2, 21–36

[22] Peaceman D. W., Rachford H. H., Jr., “The numerical solution of parabolic and elliptic differential equations”, J. Soc. Industr. Appl. Math., 3:1 (1955), 28–42

[23] Douglas J., Jr., “On the numerical integration of by implicit methods”, J. Industr. Appl. Math., 3:1 (1955), 42–65

[24] Bagrinovskii K. A., Godunov S. K., “Raznostnye skhemy dlya mnogomernykh zadach”, Dokl. AN SSSR, 1957, 431–433

[25] Moiseev N. Ya., Silanteva I. Yu., “Raznostnye skhemy proizvolnogo poryadka approksimatsii dlya resheniya lineinykh uravnenii perenosa s postoyannymi koeffitsientami metodom Godunova s antidiffuziei”, Zh. vychisl. matem. i matem. fiz., 48:7 (2008), 1282–1293

[26] Makotra O. A., Moiseev N. Ya., Silanteva I. Yu. i dr., “Cimmetrichnye raznostnye skhemy pokomponentnogo rasschepleniya i ekvivalentnye im skhemy prediktor-korrektor dlya resheniya mnogomernykh zadach gazovoi dinamiki metodom Godunova”, Zh. vychisl. matem. i matem. fiz., 49:11 (2009), 1970–1987

[27] Shokin Yu. I., Metod differentsialnogo priblizheniya, Nauka, Novosibirsk, 1979

[28] Moiseev N. Ya., “Ob odnoi modifikatsii raznostnoi skhemy Godunova”, VANT. Ser. Metodiki i programmy chislennogo resheniya zadach matem. fiz., 1986, no. 3, 35–43

[29] Anderson D., Tannekhill Dzh., Pletcher R., Vychislitelnaya gidromekhanika i teploobmen, Mir, M., 1990

[30] Kolgan V. P., “Primenenie printsipa minimalnykh znachenii proizvodnykh k postroeniyu konechno-raznostnykh skhem dlya rascheta razryvnykh reshenii gazovoi dinamiki”, Uch. zap. TsAGI, 3:6 (1972), 68–77

[31] Moiseev N. Ya., “Monotonnye raznostnye skhemy povyshennoi tochnosti dlya resheniya zadach gazovoi dinamiki metodom Godunova s antidiffuziei”, Zh. vychisl. matem. i matem. fiz., 51:4 (2011), 723–734

[32] Chetverushkin B. N., Matematicheskoe modelirovanie zadach dinamiki izluchayuschego gaza, Nauka, M., 1985