Three-dimensional evolution of the boundary of a polluted area in a bounded piecewise homogeneous porous material
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 5, pp. 913-919
Cet article a éte moissonné depuis la source Math-Net.Ru
A mathematical model describing the three-dimensional evolution of a liquid–liquid interface in a piecewise homogeneous porous medium containing impermeable rock and a basin with a free liquid is constructed using the Leibenzon–Muskat model. As an example, the dispersion of pollutants from a point source is numerically simulated.
@article{ZVMMF_2011_51_5_a12,
author = {D. N. Nikol'skii},
title = {Three-dimensional evolution of the boundary of a~polluted area in a~bounded piecewise homogeneous porous material},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {913--919},
year = {2011},
volume = {51},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_5_a12/}
}
TY - JOUR AU - D. N. Nikol'skii TI - Three-dimensional evolution of the boundary of a polluted area in a bounded piecewise homogeneous porous material JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2011 SP - 913 EP - 919 VL - 51 IS - 5 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_5_a12/ LA - ru ID - ZVMMF_2011_51_5_a12 ER -
%0 Journal Article %A D. N. Nikol'skii %T Three-dimensional evolution of the boundary of a polluted area in a bounded piecewise homogeneous porous material %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2011 %P 913-919 %V 51 %N 5 %U http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_5_a12/ %G ru %F ZVMMF_2011_51_5_a12
D. N. Nikol'skii. Three-dimensional evolution of the boundary of a polluted area in a bounded piecewise homogeneous porous material. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 5, pp. 913-919. http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_5_a12/
[1] Golubeva O. V., Kurs mekhaniki sploshnykh sred, Vyssh. shkola, M., 1972
[2] Lifanov I. K., Metod singulyarnykh integralnykh uravnenii i chislennyi eksperiment, TOO Yanus, M., 1995
[3] Nikolskii D. N., “Regulyarizatsiya diskretnoi skhemy dlya trekhmernoi zadachi ob evolyutsii granitsy razdela razlichnykh zhidkostei”, Zh. vychisl. matem. i matem. fiz., 50:3 (2010), 557–562
[4] Kiryakin V. Yu., Setukha A. V., “O skhodimosti vikhrevogo chislennogo metoda resheniya trekhmernykh uravnenii Eilera v lagranzhevykh koordinatakh”, Differents. ur-niya, 43:9 (2007), 1263–1276