Three-dimensional evolution of the boundary of a polluted area in a bounded piecewise homogeneous porous material
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 5, pp. 913-919 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A mathematical model describing the three-dimensional evolution of a liquid–liquid interface in a piecewise homogeneous porous medium containing impermeable rock and a basin with a free liquid is constructed using the Leibenzon–Muskat model. As an example, the dispersion of pollutants from a point source is numerically simulated.
@article{ZVMMF_2011_51_5_a12,
     author = {D. N. Nikol'skii},
     title = {Three-dimensional evolution of the boundary of a~polluted area in a~bounded piecewise homogeneous porous material},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {913--919},
     year = {2011},
     volume = {51},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_5_a12/}
}
TY  - JOUR
AU  - D. N. Nikol'skii
TI  - Three-dimensional evolution of the boundary of a polluted area in a bounded piecewise homogeneous porous material
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2011
SP  - 913
EP  - 919
VL  - 51
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_5_a12/
LA  - ru
ID  - ZVMMF_2011_51_5_a12
ER  - 
%0 Journal Article
%A D. N. Nikol'skii
%T Three-dimensional evolution of the boundary of a polluted area in a bounded piecewise homogeneous porous material
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2011
%P 913-919
%V 51
%N 5
%U http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_5_a12/
%G ru
%F ZVMMF_2011_51_5_a12
D. N. Nikol'skii. Three-dimensional evolution of the boundary of a polluted area in a bounded piecewise homogeneous porous material. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 5, pp. 913-919. http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_5_a12/

[1] Golubeva O. V., Kurs mekhaniki sploshnykh sred, Vyssh. shkola, M., 1972

[2] Lifanov I. K., Metod singulyarnykh integralnykh uravnenii i chislennyi eksperiment, TOO Yanus, M., 1995

[3] Nikolskii D. N., “Regulyarizatsiya diskretnoi skhemy dlya trekhmernoi zadachi ob evolyutsii granitsy razdela razlichnykh zhidkostei”, Zh. vychisl. matem. i matem. fiz., 50:3 (2010), 557–562

[4] Kiryakin V. Yu., Setukha A. V., “O skhodimosti vikhrevogo chislennogo metoda resheniya trekhmernykh uravnenii Eilera v lagranzhevykh koordinatakh”, Differents. ur-niya, 43:9 (2007), 1263–1276