The principle of minimum of partial local variations for determining convective flows in the numerical solution of one-dimensional nonlinear scalar hyperbolic equations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 5, pp. 881-897 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For the CABARET finite difference scheme, a new approach to the construction of convective flows for the one-dimensional nonlinear transport equation is proposed based on the minimum principle of partial local variations. The new approach ensures the monotonicity of solutions for a wide class of problems of a fairly general form including those involving discontinuous and nonconvex functions. Numerical results illustrating the properties of the proposed method are discussed.
@article{ZVMMF_2011_51_5_a10,
     author = {V. M. Goloviznin and A. A. Kanaev},
     title = {The principle of minimum of partial local variations for determining convective flows in the numerical solution of one-dimensional nonlinear scalar hyperbolic equations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {881--897},
     year = {2011},
     volume = {51},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_5_a10/}
}
TY  - JOUR
AU  - V. M. Goloviznin
AU  - A. A. Kanaev
TI  - The principle of minimum of partial local variations for determining convective flows in the numerical solution of one-dimensional nonlinear scalar hyperbolic equations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2011
SP  - 881
EP  - 897
VL  - 51
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_5_a10/
LA  - ru
ID  - ZVMMF_2011_51_5_a10
ER  - 
%0 Journal Article
%A V. M. Goloviznin
%A A. A. Kanaev
%T The principle of minimum of partial local variations for determining convective flows in the numerical solution of one-dimensional nonlinear scalar hyperbolic equations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2011
%P 881-897
%V 51
%N 5
%U http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_5_a10/
%G ru
%F ZVMMF_2011_51_5_a10
V. M. Goloviznin; A. A. Kanaev. The principle of minimum of partial local variations for determining convective flows in the numerical solution of one-dimensional nonlinear scalar hyperbolic equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 5, pp. 881-897. http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_5_a10/

[1] Kulikovskii A. G., Pogorelov N. V., Semenov F. Yu., Matematicheskie voprosy chislennogo resheniya giperbolicheskikh sistem uravnenii, Fizmatlit, M., 2001

[2] Jay P. Boris, David L. Book, “Flux-corrected transport. 1. SHASTA, A fluid transport algorithm that works”, J. Comput. Phys., 135 (1997), 172–186

[3] Harten Ami, Egquist B., Osher S., Chakravarthy S. R., “Uniformly high order accurate essentially non4oscillatory schemes. III”, J. Comput. Phys., 131 (1997), 3–47

[4] Sheu T. W. H., Wang S. K., Tsai S. F., “Development of high-resolution scheme for a multi-dimensional advection – diffusion equation”, J. Comput. Phys., 144 (1998), 1–16

[5] Goloviznin V. M., Samarskii A. A., “Raznostnaya approksimatsiya konvektivnogo perenosa s prostranstvennym rasschepleniem vremennói proizvodnoi”, Matem. modelirovanie, 10:1 (1998), 86–100

[6] Goloviznin V. M., Samarskii A. A., “Nekotorye svoistva raznostnoi skhemy “KABARE””, Matem. modelirovanie, 10:1 (1998), 101–116

[7] Goloviznin V. M., Karabasov S. A., “Nelineinaya korrektsiya skhemy “KABARE””, Matem. modelirovanie, 12:1 (1998), 107–123

[8] Goloviznin V. M., Karabasov S. A., Kobrinskii I. M., “Balansno-kharakteristicheskie skhemy s razdelennymi konservativnymi i potokovymi peremennymi”, Matem. modelirovanie, 15:9 (2003), 29–48

[9] Goloviznin V. M., “Digital transport algorithm for hyperbolic equations”: Goloviznin V. M., Karabasov S. A., Hyperbolic problems. Theory, numerics and application, Yokohama, 2006, 79–86

[10] Goloviznin V. M., Karabasov S. A., “Compact accurately boundary-adjusting high-resolution technique for fluid dynamics”, J. Comput. Phys., 2009 | DOI

[11] Goloviznin V. M., Semenov V. N., Kanaev A. A. i dr., Novyi vychislitelnyi algoritm dlya matematicheskogo modelirovaniya prosachivaniya vlagi skvoz nenasyschennuyu treschinovatuyu geologicheskuyu sredu s nizkoi pronitsaemostyu, Preprint IBRAE No IBRAE-2006-07, IBRAE RAN, M., 2006, 53 pp.

[12] Goloviznin V. M., “Balansno-kharakteristicheskii metod chislennogo resheniya uravnenii gazovoi dinamiki”, Dokl. RAN, 403:4 (2005), 1–6

[13] Goloviznin V. M., Karabasov S. A., “New efficient high-resolution method for nonlinear problems in aeroacoustics”, AIAA Journal, 45:12 (2007), 2861–2871

[14] Goloviznin V. M., Karabasov S. A., Berloff P. S., “CABARET in the ocean gyres”, Ocean Modell., 2009 | DOI

[15] Iserles A., “Generalized leapfrog methods”, IMA J. Numer. Analys., 6 (1986), 381–392

[16] Ostapenko V. V., “O monotonnosti balansno-kharakteristicheskoi skhemy”, Matem. modelirovanie, 21:7 (2009), 29–42

[17] Goritskii F. Yu., Kruzhkov S. N., Chechkin G. A., Uravneniya s chastnymi proizvodnymi pervogo poryadka, MGU, M., 1999, 95 pp.