The principle of minimum of partial local variations for determining convective flows in the numerical solution of one-dimensional nonlinear scalar hyperbolic equations
    
    
  
  
  
      
      
      
        
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 5, pp. 881-897
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              For the CABARET finite difference scheme, a new approach to the construction of convective flows for the one-dimensional nonlinear transport equation is proposed based on the minimum principle of partial local variations. The new approach ensures the monotonicity of solutions for a wide class of problems of a fairly general form including those involving discontinuous and nonconvex functions. Numerical results illustrating the properties of the proposed method are discussed.
            
            
            
          
        
      @article{ZVMMF_2011_51_5_a10,
     author = {V. M. Goloviznin and A. A. Kanaev},
     title = {The principle of minimum of partial local variations for determining convective flows in the numerical solution of one-dimensional nonlinear scalar hyperbolic equations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {881--897},
     publisher = {mathdoc},
     volume = {51},
     number = {5},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_5_a10/}
}
                      
                      
                    TY - JOUR AU - V. M. Goloviznin AU - A. A. Kanaev TI - The principle of minimum of partial local variations for determining convective flows in the numerical solution of one-dimensional nonlinear scalar hyperbolic equations JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2011 SP - 881 EP - 897 VL - 51 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_5_a10/ LA - ru ID - ZVMMF_2011_51_5_a10 ER -
%0 Journal Article %A V. M. Goloviznin %A A. A. Kanaev %T The principle of minimum of partial local variations for determining convective flows in the numerical solution of one-dimensional nonlinear scalar hyperbolic equations %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2011 %P 881-897 %V 51 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_5_a10/ %G ru %F ZVMMF_2011_51_5_a10
V. M. Goloviznin; A. A. Kanaev. The principle of minimum of partial local variations for determining convective flows in the numerical solution of one-dimensional nonlinear scalar hyperbolic equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 5, pp. 881-897. http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_5_a10/
