The principle of minimum of partial local variations for determining convective flows in the numerical solution of one-dimensional nonlinear scalar hyperbolic equations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 5, pp. 881-897

Voir la notice de l'article provenant de la source Math-Net.Ru

For the CABARET finite difference scheme, a new approach to the construction of convective flows for the one-dimensional nonlinear transport equation is proposed based on the minimum principle of partial local variations. The new approach ensures the monotonicity of solutions for a wide class of problems of a fairly general form including those involving discontinuous and nonconvex functions. Numerical results illustrating the properties of the proposed method are discussed.
@article{ZVMMF_2011_51_5_a10,
     author = {V. M. Goloviznin and A. A. Kanaev},
     title = {The principle of minimum of partial local variations for determining convective flows in the numerical solution of one-dimensional nonlinear scalar hyperbolic equations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {881--897},
     publisher = {mathdoc},
     volume = {51},
     number = {5},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_5_a10/}
}
TY  - JOUR
AU  - V. M. Goloviznin
AU  - A. A. Kanaev
TI  - The principle of minimum of partial local variations for determining convective flows in the numerical solution of one-dimensional nonlinear scalar hyperbolic equations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2011
SP  - 881
EP  - 897
VL  - 51
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_5_a10/
LA  - ru
ID  - ZVMMF_2011_51_5_a10
ER  - 
%0 Journal Article
%A V. M. Goloviznin
%A A. A. Kanaev
%T The principle of minimum of partial local variations for determining convective flows in the numerical solution of one-dimensional nonlinear scalar hyperbolic equations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2011
%P 881-897
%V 51
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_5_a10/
%G ru
%F ZVMMF_2011_51_5_a10
V. M. Goloviznin; A. A. Kanaev. The principle of minimum of partial local variations for determining convective flows in the numerical solution of one-dimensional nonlinear scalar hyperbolic equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 5, pp. 881-897. http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_5_a10/