A numerical algorithm for solving the matrix equation $AX+X^\mathrm TB=C$
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 5, pp. 739-747
Voir la notice de l'article provenant de la source Math-Net.Ru
An algorithm of the Bartels–Stewart type for solving the matrix equation $AX+X^\mathrm TB=C$ is proposed. By applying the $\mathrm{QZ}$ algorithm, the original equation is reduced to an equation of the same type having triangular matrix coefficients $A$ and $B$. The resulting matrix equation is equivalent to a sequence of low-order systems of linear equations for the entries of the desired solution. Through numerical experiments, the situation where the conditions for unique solvability are “nearly” violated is simulated. The loss of the quality of the computed solution in this situation is analyzed.
@article{ZVMMF_2011_51_5_a0,
author = {Yu. O. Vorontsov and Kh. D. Ikramov},
title = {A~numerical algorithm for solving the matrix equation $AX+X^\mathrm TB=C$},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {739--747},
publisher = {mathdoc},
volume = {51},
number = {5},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_5_a0/}
}
TY - JOUR AU - Yu. O. Vorontsov AU - Kh. D. Ikramov TI - A numerical algorithm for solving the matrix equation $AX+X^\mathrm TB=C$ JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2011 SP - 739 EP - 747 VL - 51 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_5_a0/ LA - ru ID - ZVMMF_2011_51_5_a0 ER -
%0 Journal Article %A Yu. O. Vorontsov %A Kh. D. Ikramov %T A numerical algorithm for solving the matrix equation $AX+X^\mathrm TB=C$ %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2011 %P 739-747 %V 51 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_5_a0/ %G ru %F ZVMMF_2011_51_5_a0
Yu. O. Vorontsov; Kh. D. Ikramov. A numerical algorithm for solving the matrix equation $AX+X^\mathrm TB=C$. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 5, pp. 739-747. http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_5_a0/