Finite element solution of the Kolmogorov–Feller equation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 4, pp. 654-660 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For the Kolmogorov–Feller integro-differential equation, a solution method is proposed based on its finite-element approximation.
@article{ZVMMF_2011_51_4_a9,
     author = {N. A. Baranov and L. I. Turchak},
     title = {Finite element solution of the {Kolmogorov{\textendash}Feller} equation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {654--660},
     year = {2011},
     volume = {51},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_4_a9/}
}
TY  - JOUR
AU  - N. A. Baranov
AU  - L. I. Turchak
TI  - Finite element solution of the Kolmogorov–Feller equation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2011
SP  - 654
EP  - 660
VL  - 51
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_4_a9/
LA  - ru
ID  - ZVMMF_2011_51_4_a9
ER  - 
%0 Journal Article
%A N. A. Baranov
%A L. I. Turchak
%T Finite element solution of the Kolmogorov–Feller equation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2011
%P 654-660
%V 51
%N 4
%U http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_4_a9/
%G ru
%F ZVMMF_2011_51_4_a9
N. A. Baranov; L. I. Turchak. Finite element solution of the Kolmogorov–Feller equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 4, pp. 654-660. http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_4_a9/

[1] Baranov N. A., Turchak L. I., Metody analiza funktsionalnoi bezopasnosti slozhnykh tekhnicheskikh sistem, VTs RAN, M., 2006 | MR

[2] Bulinskii A. V., Shiryaev A. N., Teoriya sluchainykh protsessov, Nauka, M., 2004

[3] Gardiner K. V., Stokhasticheskie metody v estestvennykh naukakh, Mir, M., 1986 | MR | Zbl

[4] Baranov N. A., “Reshenie uravneniya dinamiki sostoyanii sistemy s nakopleniem povrezhdenii metodom konechnykh raznostei”, Nauch. vestn. MGTU GA. Ser. Aeromekhan. i prochnost, 2007, no. 119, 163–165

[5] Baranov N. A., “Chislennoe reshenie uravneniya dinamiki sostoyanii diskretno povrezhdaemoi sistemy”, Nauch. vestn. MGTU GA. Ser. Aeromekhan. i prochnost, 2007, no. 119, 149–151

[6] Baranov N. A., Krasnikov O. E., “Chislennyi metod resheniya uravneniya dinamiki sostoyanii sistemy s nepreryvnym mnozhestvom sostoyanii”, Vestn. Tambovskogo un-ta. Ser. Estestv. i tekhn. nauki, 11:3 (2006), 291–294 | MR

[7] Baranov N. A., Turchak L. I., “Chislennoe reshenie uravneniya Kolmogorova–Fellera”, Zh. vychisl. matem. i matem. fiz., 47:7 (2007), 1221–1228 | MR

[8] Baranov N. A., Turchak L. I., “Chislennoe reshenie uravneniya Kolmogorova-Fellera s singulyarnymi osobennostyami”, Zh. vychisl. matem. i matem. fiz., 50:2 (2010), 347–351 | MR | Zbl

[9] Khartman F., Obyknovennye differentsialnye uravneniya, Mir, M., 1970 | MR

[10] Natanson I. G., Teoriya funktsii veschestvennoi peremennoi, Nauka, M., 1974 | MR