On the uniqueness of the solution of a nonlinear eigenmode problem
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 4, pp. 642-646 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A condition with a natural physical interpretation is proposed that singles out a unique solution from the infinite set of “geometrically” different solutions of a problem concerning the natural electrical oscillations in a semiconductor with allowance for strong dissipation and sources of free charges.
@article{ZVMMF_2011_51_4_a7,
     author = {M. O. Korpusov},
     title = {On the uniqueness of the solution of a~nonlinear eigenmode problem},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {642--646},
     year = {2011},
     volume = {51},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_4_a7/}
}
TY  - JOUR
AU  - M. O. Korpusov
TI  - On the uniqueness of the solution of a nonlinear eigenmode problem
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2011
SP  - 642
EP  - 646
VL  - 51
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_4_a7/
LA  - ru
ID  - ZVMMF_2011_51_4_a7
ER  - 
%0 Journal Article
%A M. O. Korpusov
%T On the uniqueness of the solution of a nonlinear eigenmode problem
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2011
%P 642-646
%V 51
%N 4
%U http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_4_a7/
%G ru
%F ZVMMF_2011_51_4_a7
M. O. Korpusov. On the uniqueness of the solution of a nonlinear eigenmode problem. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 4, pp. 642-646. http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_4_a7/

[1] Pokhozhaev S. I., “O sobstvennykh funktsiyakh uravneniya $\Delta u+\lambda f(u)=0$”, Dokl. AN SSSR, 165:1 (1965), 36 | Zbl

[2] Pokhozhaev S. I., “O sobstvennykh funktsiyakh kvazilineinykh ellipticheskikh zadach”, Matem. sb., 82:2 (1970), 192

[3] Kuzin I., Pohozaev S., Entire solutions of semilinear elliptic equations, Nonlinear Differential Equations and their Applications, 33, Birkhauser, Basel, 1997 | MR | Zbl

[4] Skrypnik I. V., Metody issledovaniya nelineinykh ellipticheskikh granichnykh zadach, Nauka, M., 1990 | MR

[5] Klimov V. S., “O funktsionalakh s beskonechnym chislom kriticheskikh znachenii”, Matem. sb., 100:1(5) (1976), 102–116 | MR | Zbl

[6] Lyusternik L. A., Shnirelman L. G., Topologicheskie metody v variatsionnykh zadachakh, Gostekhizdat, M., 1930

[7] Krasnoselskii M. A., Topologicheskie metody v teorii nelineinykh integralnykh uravnenii, Gostekhteoretizdat, M., 1956 | MR

[8] Drabek P., Milota Y., Methods of nonlinear analisys. Applications to differential equations, Birkhauser, 2007 | MR | Zbl

[9] Ambrosetti A., Rabinowitz P. H., “Dual variational methods in critical point theory and applications”, J. Different. Equat., 14 (1973), 349–381 | MR | Zbl

[10] Clark C. D., “A variant of the Lusternik–Schnirelman theory”, Indiana Univ. Math. Jornal, 22:1 (1972), 65–74 | DOI | MR | Zbl

[11] Pokhozhaev S. I., “O metode rassloeniya resheniya nelineinykh kraevykh zadach”, Tr. MIAN SSSR, 192, 1990, 146–163 | MR

[12] Landau L. D., Lifshits E. M., Elektrodinamika sploshnykh sred. Teoreticheskaya fizika, v. 8, Nauka, M., 1992 | MR

[13] Drabek P., Otani M., “Global bifurcation result for the $p$-biharmonic operator”, EJDE, 48 (2001), 1–19 | MR

[14] Otani M., Idogawa T., “The first eigenvalues of some abstract elliptic operators”, Funkcialaj Ekvacioj, 38 (1995), 1–9 | MR | Zbl