Tiling optimization for the solution of two-dimensional time-dependent heat equation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 4, pp. 631-641 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Tiling optimization for the solution of the Dirichlet problem for the two-dimensional heat equation on computers with distributed memory is investigated. Estimates of the amount of communications and computations are obtained. The tiling optimization problem is reduced to the minimization of a function that explicitly expresses the dependence of the execution time on the tile size and the parameters of the target supercomputer – the dimension and size of the computing environment, processor performance, initialization time, and capacity of the communication channels.
@article{ZVMMF_2011_51_4_a6,
     author = {S. V. Bakhanovich and P. I. Sobolevskii},
     title = {Tiling optimization for the solution of two-dimensional time-dependent heat equation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {631--641},
     year = {2011},
     volume = {51},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_4_a6/}
}
TY  - JOUR
AU  - S. V. Bakhanovich
AU  - P. I. Sobolevskii
TI  - Tiling optimization for the solution of two-dimensional time-dependent heat equation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2011
SP  - 631
EP  - 641
VL  - 51
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_4_a6/
LA  - ru
ID  - ZVMMF_2011_51_4_a6
ER  - 
%0 Journal Article
%A S. V. Bakhanovich
%A P. I. Sobolevskii
%T Tiling optimization for the solution of two-dimensional time-dependent heat equation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2011
%P 631-641
%V 51
%N 4
%U http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_4_a6/
%G ru
%F ZVMMF_2011_51_4_a6
S. V. Bakhanovich; P. I. Sobolevskii. Tiling optimization for the solution of two-dimensional time-dependent heat equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 4, pp. 631-641. http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_4_a6/

[1] Ramanujam J., Sadayappaan P., “Tiling of iteration spaces for multicomputers”, Proc. Internat. Conf. Parallel Process., v. 2, 1990, 179–186

[2] Boulet P., Darte A., Risset T., Robert Y., “(Pen)-ultimate tiling?”, Integration, The VLSI J., 17 (1994), 33–51 | DOI

[3] Xue J., “Communication-minimal tiling of uniform dependence loops”, J. Parallel and Distributed Comput., 1:42 (1997), 42–59 | DOI

[4] Schreiber R., Dongarra J., Automatic blocking of nested loops, Techn. Rept. 90.38, RIACS, 1997

[5] Ohta H., Saito Y., Kainaga M., Ono H., “Optimal tile size adjustment in compiling general DOACROSS loop nests”, Proc. Internat. Conf. on Supercomputing, ACM Press, 1995, 270–279

[6] Hodzic E., Shang W., “On supernode transformation with minimized total running time”, IEEE Trans. Parallel and Distributed Systems, 9:5 (1998), 417–428 | DOI

[7] Hodzic E., Shang W., “On-time optimal supernode shape”, IEEE Trans. Parallel and Distributed Systems, 13:10 (2002), 1220–1223 | DOI

[8] Bakhanovich S. V., Sobolevskii P. I., “Otobrazhenie algoritmov na vychislitelnye sistemy s raspredelennoi pamyatyu: optimizatsiya tailinga dlya odno- i dvumernykh topologii”, Vestsi NAN Belarusi. Ser. fiz.-mat. navuk, 2006, no. 2, 106–112 | MR

[9] Bakhanovich S. V., Sobolevskii P. I., “Optimizatsiya tailinga pri LSGP strategii otobrazheniya algoritmov na superkompyutery s raspredelennoi pamyatyu”, Vestsi NAN Belarusi. Ser. fiz.-mat. navuk, 2007, no. 3, 113–118