On solutions of three-dimensional systems describing the transition from an unstable equilibrium to a stable cycle
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 4, pp. 620-630 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Given a three-dimensional dynamical system on the interval $t_0, the transition from the neighborhood of an unstable equilibrium to a stable limit cycle is studied. In the neighborhood of the equilibrium, the system is reduced to a normal form. The matrix of the linearized system is assumed to have a complex eigenvalue $\lambda=\varepsilon+i\beta$, with $\beta\gg\varepsilon>0$ and a real eigenvalue $\delta<0$ with $|\delta|\gg\varepsilon$. On the arbitrary interval $[t_0,+\infty)$, an approximate solution is sought as a polynomial $P_N(\varepsilon)$ in powers of the small parameter $\varepsilon$ with coefficients from Hölder function spaces. It is proved that there exist $\varepsilon_N$ and $C_N$ depending on the initial data such that, for $0<\varepsilon<\varepsilon_N$, the difference between the exact and approximate solutions does not exceed $C_{N^{\varepsilon^{N+1}}}$.
@article{ZVMMF_2011_51_4_a5,
     author = {S. E. Gorodetski and A. M. Ter-Krikorov},
     title = {On solutions of three-dimensional systems describing the transition from an unstable equilibrium to a~stable cycle},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {620--630},
     year = {2011},
     volume = {51},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_4_a5/}
}
TY  - JOUR
AU  - S. E. Gorodetski
AU  - A. M. Ter-Krikorov
TI  - On solutions of three-dimensional systems describing the transition from an unstable equilibrium to a stable cycle
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2011
SP  - 620
EP  - 630
VL  - 51
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_4_a5/
LA  - ru
ID  - ZVMMF_2011_51_4_a5
ER  - 
%0 Journal Article
%A S. E. Gorodetski
%A A. M. Ter-Krikorov
%T On solutions of three-dimensional systems describing the transition from an unstable equilibrium to a stable cycle
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2011
%P 620-630
%V 51
%N 4
%U http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_4_a5/
%G ru
%F ZVMMF_2011_51_4_a5
S. E. Gorodetski; A. M. Ter-Krikorov. On solutions of three-dimensional systems describing the transition from an unstable equilibrium to a stable cycle. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 4, pp. 620-630. http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_4_a5/

[1] Khessard B., Kazarinov N., Ven I., Teoriya i prilozheniya bifurkatsii rozhdeniya tsikla, Mir, M., 1985 | MR

[2] Arnold V. I., Dopolnitelnye glavy teorii obyknovennykh differentsialnykh uravnenii, Nauka, M., 1978 ; 1990 | MR

[3] Gukenkheimer Dzh., Kholms F., Nelineinye kolebaniya, dinamicheskie sistemy i bifurkatsii vektornykh polei, M.-Izhevsk, 2002

[4] Arnold V. I., Afraimovich V. S., Ilyashenko Yu. S., Shilnikov L. P., “Teoriya bifurkatsii”, Dinamicheskie sistemy-5, Itogi nauki i tekhn. Sovrem. probl. matem. Fund. napr., 5, VINITI, M., 1986, 5–218 | MR

[5] Gavrilov N. K., “O nekotorykh bifurkatsiyakh sostoyaniya ravnovesiya s odnim nulevym i paroi chisto mnimykh kornei”, Metody kachestvennoi teorii differentsialnykh uravnenii, Gorkovskii un-t, Gorkii, 1978, 33–40 | Zbl

[6] Ter-Krikorov A. M., “O perekhodnykh protsessakh dlya uravneniya Van der Polya”, Zh. vychisl. matem. i matem. fiz., 47:6 (2007), 968–979 | MR

[7] Gorodetskii S. E., Ter-Krikorov A. M., “O resheniyakh dvukhmernykh sistem, realizuyuschikh perekhod ot sostoyaniya neustoichivogo ravnovesiya k ustoichivomu tsiklu”, Zh. vychisl. matem. i matem. fiz., 48:6 (2008), 1003–1013

[8] Magnitskii N. A., Sidorov S. V., Novye metody khaoticheskoi dinamiki, Editorial URSS, M., 2004