Resource-optimal control of linear systems
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 4, pp. 562-579 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A numerical method for minimizing the resource consumption for linear dynamical systems is proposed. It is based on forming a finite-time control that steers the linear system from an arbitrary initial state to the desired terminal state in a given fixed time; this control gives an approximate solution of the problem. It is shown that the structure of the finite-time control makes it possible to determine the structure of the resource-optimal control. A method for determining an initial approximation is described, and an iterative algorithm for calculating the optimal control is proposed. A system of linear algebraic equations relating the deviations of the initial conditions in the adjoint system to the deviations of the phase coordinates from the prescribed terminal state at the terminal point in time is obtained. A computational algorithm is described. The radius of local convergence is found and the quadratic rate of convergence is established. It is proved that the computational procedure and the sequence of controls converge to the resource-optimal control.
@article{ZVMMF_2011_51_4_a2,
     author = {V. M. Aleksandrov},
     title = {Resource-optimal control of linear systems},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {562--579},
     year = {2011},
     volume = {51},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_4_a2/}
}
TY  - JOUR
AU  - V. M. Aleksandrov
TI  - Resource-optimal control of linear systems
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2011
SP  - 562
EP  - 579
VL  - 51
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_4_a2/
LA  - ru
ID  - ZVMMF_2011_51_4_a2
ER  - 
%0 Journal Article
%A V. M. Aleksandrov
%T Resource-optimal control of linear systems
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2011
%P 562-579
%V 51
%N 4
%U http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_4_a2/
%G ru
%F ZVMMF_2011_51_4_a2
V. M. Aleksandrov. Resource-optimal control of linear systems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 4, pp. 562-579. http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_4_a2/

[1] Atans M., Falb P., Optimalnoe upravlenie, Mashinostr., M., 1968

[2] Flugge-Lotz I., Marbach H., “The optimal control of some attitude systems for different performace criteria”, J. Basis Engug., 85 (1963), 165–176

[3] Balakrishnan A. V., Neustadt L. W., Computing methods in optimization problems, Acad. Press Inc., New York, 1964 | MR | Zbl

[4] Ragab M. Z., “Time fuel optimal deconpling control problem”, Adv. Model. Simul., 22:2 (1990), 1–16 | MR | Zbl

[5] Redmond J., Silverberg L., “Fuel consumption in optima control”, J. Guid. Control. Dyn., 15:2 (1992), 424–430 | DOI | MR | Zbl

[6] Singh T., “Fuel/time optimal control of the benchmark problem”, J. Guid. Control. Dyn., 18:6 (1995), 1225–1231 | DOI | Zbl

[7] Sachs G., Dinkelmann M., “Reduction of coolant fuel losses in hypersonic flight by optimal trajectory control”, J. Guid. Control. Dyn., 19:6 (1996), 1278–1284 | DOI | Zbl

[8] Ivanov V. A., Kozhevnikov S. A., “Odna zadacha sinteza optimalnogo po “raskhodu topliva” upravleniya lineinymi ob'ektami vtorogo poryadka s proizvodnymi upravleniya”, Izv. RAN. Teoriya i sistemy upravleniya, 1996, no. 4, 77–83 | Zbl

[9] Dewell L. D., Speyer J. L., “Fuel-optimal periodic control and regulation in constrained hypersonic flight”, J. Guid. Control. Dyn., 20:5 (1997), 923–932 | DOI | Zbl

[10] Liu S. W., Singh T., “Fuel/time optimal control of spacecraft maneuvers”, J. Guid. Control. Dyn., 20:2 (1997), 394–397 | DOI | Zbl

[11] Shevchenko G. V., “Metod nakhozhdeniya optimalnogo po minimumu raskhoda resursov upravleniya dlya ob'ektov spetsialnogo vida”, Avtometriya, 42:2 (2006), 49–67 | MR

[12] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1976 | Zbl

[13] Aleksandrov V. M., “Chislennyi metod resheniya zadachi lineinogo bystrodeistviya”, Zh. vychisl. matem. i matem. fiz., 38:6 (1998), 918–931 | MR | Zbl

[14] Aleksandrov V. M., “Priblizhennoe reshenie lineinoi zadachi na minimum raskhoda resursov”, Zh. vychisl. matem. i matem. fiz., 39:3 (1999), 418–430 | MR | Zbl