Archimedes law under bifurcations of solution and partial averaging of phenomenological variables
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 4, pp. 708-722 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A model of the convective flow of viscous fluid is proposed with regard to possible finite “fluctuations” of thermophysical characteristics in a neighborhood of branch points. A method for the analysis of the influence of averaging on the values of phenomenological variables for the secondary flow and exact bounds on these values are calculated.
@article{ZVMMF_2011_51_4_a14,
     author = {V. V. Larchenko},
     title = {Archimedes law under bifurcations of solution and partial averaging of phenomenological variables},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {708--722},
     year = {2011},
     volume = {51},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_4_a14/}
}
TY  - JOUR
AU  - V. V. Larchenko
TI  - Archimedes law under bifurcations of solution and partial averaging of phenomenological variables
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2011
SP  - 708
EP  - 722
VL  - 51
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_4_a14/
LA  - ru
ID  - ZVMMF_2011_51_4_a14
ER  - 
%0 Journal Article
%A V. V. Larchenko
%T Archimedes law under bifurcations of solution and partial averaging of phenomenological variables
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2011
%P 708-722
%V 51
%N 4
%U http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_4_a14/
%G ru
%F ZVMMF_2011_51_4_a14
V. V. Larchenko. Archimedes law under bifurcations of solution and partial averaging of phenomenological variables. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 4, pp. 708-722. http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_4_a14/

[1] Larchenko V. V., “Primenenie asimptoticheskogo metoda pri chislennom integrirovanii singulyarno vozmuschennykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 16:2 (1976), 460–469 | Zbl

[2] Larchenko V. V., “Bifurkatsionnaya neopredelennost i fluktuatsiya tochek vetvleniya v usloviyakh singulyarnogo vozmuscheniya”, Zh. vychisl. matem. i matem. fiz., 29:10 (1989), 1538–1551 | MR | Zbl

[3] Friedrichs K. O., Stoker J. J., “Buckling of the circular plate beyond the critical thrust”, J. Appl. Mech., 9:1 (1942), 7–14 | MR | Zbl

[4] Sunakawa M., Ichida K., A high precision experiment on the buckling of spherical caps subjected to external pressure, Rept No 508, Univ. of Tokyo, 1974, 87–121

[5] Larchenko V. V., “Asimptoticheskii analiz neosesimmetrichnykh form ravnovesiya tonkoi pologoi sfericheskoi obolochki”, Prikl. matem. i mekhan., 44:6 (1980), 1076–1086 | Zbl

[6] Cliffe K. A., Spence A., Tavener S. J., “The numerical analysis of bifurcation problems with application to fluid mechanics”, Acta Numer., 2000, 39–131 | MR | Zbl

[7] Larchenko V. V., “Bifurkatsionno nekorrektnye zadachi i determinirovannye yavleniya v usloviyakh singulyarnogo vozmuscheniya”, Dokl. AN SSSR, 307:6 (1989), 1349–1354 | MR

[8] Vedenyapin V. V., Kineticheskie uravneniya Boltsmana i Vlasova, Fizmatlit, M., 2001

[9] Cherchinyani K., Teoriya i prilozheniya uravneniya Boltsmana, Mir, M., 1978 | MR

[10] Gershuni G. Z., Zhukhovitskii E. M., Nepomnyaschii A. A., Ustoichivost konvektivnykh techenii, Nauka, M., 1989 | MR | Zbl

[11] Landau L. D., Lifshits V. M., Teoreticheskaya fizika, v. 6, Nauka, M., 1988

[12] Kochin N. E., Kibel I. A., Roze N. V., Teoreticheskaya gidromekhanika, Ch. 2, M., 1963

[13] Dorodnitsyn V. A., Gruppovye svoistva raznostnykh uravnenii, Fizmatlit, M., 2001 | Zbl

[14] Larchenko V. V., “Algoritmizatsiya vychislenii na simplekticheskom bazise”, Differents. ur-niya, 43:3 (2007), 411–422 | MR | Zbl

[15] Golod P. I., Klimyk A. U., Matematicheskie osnovy teorii simmetrii, RKhD, M.-Izhevsk, 2001

[16] Abuev F. L., Larchenko V. V., “Bifurkatsionnaya neopredelennost i ee sobstvennaya granitsa”, Zh. vychisl. matem. i matem. fiz., 42:1 (2002), 33–46 | MR | Zbl

[17] Sidorov N. A., Loginov B. V. et al., Lyapunov–Schmidt methods in nonlinear analysis, Kluwer Acad. Publ., Dordrecth, 2002 | Zbl

[18] Antoneli F., Dias A. P. S., Paul C., “Matthews invariant, equivariants and characters in symmetric bifurcation theory”, Proc. Roy. Soc. Edinburgh. A, 138 (2008), 477–512 | MR | Zbl

[19] Larchenko V. V., “Nevosproizvodimost vtorichnogo konvektivnogo techeniya v okrestnosti kratnoi tochki vetvleniya”, Matem. modelirovanie, 16 (2004), 44–60 | MR | Zbl