@article{ZVMMF_2011_51_4_a12,
author = {A. V. Vishnevskii and A. M. Oparin and N. N. Fimin and V. M. Chechetkin},
title = {Numerical simulation of inviscid bubble dynamics in a~centrally symmetric gravitational field},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {684--695},
year = {2011},
volume = {51},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_4_a12/}
}
TY - JOUR AU - A. V. Vishnevskii AU - A. M. Oparin AU - N. N. Fimin AU - V. M. Chechetkin TI - Numerical simulation of inviscid bubble dynamics in a centrally symmetric gravitational field JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2011 SP - 684 EP - 695 VL - 51 IS - 4 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_4_a12/ LA - ru ID - ZVMMF_2011_51_4_a12 ER -
%0 Journal Article %A A. V. Vishnevskii %A A. M. Oparin %A N. N. Fimin %A V. M. Chechetkin %T Numerical simulation of inviscid bubble dynamics in a centrally symmetric gravitational field %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2011 %P 684-695 %V 51 %N 4 %U http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_4_a12/ %G ru %F ZVMMF_2011_51_4_a12
A. V. Vishnevskii; A. M. Oparin; N. N. Fimin; V. M. Chechetkin. Numerical simulation of inviscid bubble dynamics in a centrally symmetric gravitational field. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 51 (2011) no. 4, pp. 684-695. http://geodesic.mathdoc.fr/item/ZVMMF_2011_51_4_a12/
[1] Bychkov V., Popov M. V., Oparin A. M. i dr., “Dinamika puzyrei v sverkhnovykh zvezdakh i turbulentnykh vikhryakh”, Astron. zhurnal, 82 (2005), 337–351
[2] Anuchina N. N., Volkov V. I., Ilyutina O. S., Kozyrev O. M., VII Zababakhinskie nauchnye chteniya (Snezhinsk, 2003)
[3] Zhmailo V. A., Yanilkin Yu. V., “Direct numerical simulation of magnetic field turbulent diflusion into accelerated plasma”, 7th Internat. Workshop on Phys. Compressible Turbulent Mixing (St.-Petersbourg. 1999), 445–453
[4] Kull H., “Theory of the Rayleigh-Taylor instability”, Phys. Rept., 206 (1991), 197–325 | DOI
[5] Davies R., Taylor G., “The mechanics of large bubbles rising throuhg extended liquids and through liquids in tubes”, Proc. Roy. Soc. A, 200 (1950), 375–390 | DOI
[6] Layzer D., “On the instability of superposed fluids in a gravitational field”, Astrophys. J., 122 (1955), 1–12 | DOI | MR
[7] Kull H., “Bubble motion in the nonlinear Rayleigh–Taylor instability”, Phys. Rev. Letts, 51 (1983), 1434–1437 | DOI
[8] Oparin A. M., “Chislennoe modelirovanie problem, svyazannykh i intensivnym razvitiem gidrodinamicheskikh neustoichivostei”, Novoe v chisl. modelirovanii: algoritmy, vychisl. eksperiment, rezultaty, Nauka, M., 2000
[9] http://linux.die.net/man/1/euler2d
[10] http://www.cs.cmu.edu/~quake/triangle.research.html
[11] Abarzhi S. I., “Low symmetric bubbles in Rayleigh–Taylor instability”, 7th Internat. Workshop. Phys. Compressible Turbulent Mixing (St.-Petersbourg, 1999), 205–208
[12] Inogamov N. A., Oparin A. M., Demyanov A. Yu. i dr., “O stokhasticheskom peremeshivanii, vyzvannom neustoichivostyu Releya–Teilora”, Zh. eksperim. i teor. fiz., 119:4 (2001), 822–852